
CORBA Programmers Guide

Remedy IT Expertise BV

Table of Contents

Preface. 1

Contact information . 2

1. Remedy IT Support . 3

2. Training. 4

2.1. Using the ACE C++ Framework . 4

2.2. Introduction to CORBA . 5

2.3. CORBA Programming with C++ . 6

2.4. CORBA Programming with C++11 . 7

2.5. Advanced CORBA Programming with TAO . 9

2.6. Component Based Development using AXCIOMA. 10

3. Obtain your CORBA implementation . 12

3.1. TAOX11. 12

3.2. R2CORBA . 12

3.3. TAO. 12

3.4. JacORB . 12

4. TAOX11 . 13

4.1. Introduction. 13

4.2. Define your application IDL. 13

4.3. Implement the server . 13

4.4. Implement the client . 16

4.5. Compile client and server . 18

4.6. Run your application. 19

5. TAO . 20

5.1. Introduction. 20

5.2. Define your application IDL. 20

5.3. Implement the server . 20

5.4. Implement the client . 23

5.5. Compile client and server . 25

5.6. Run your application. 26

6. R2CORBA . 27

6.1. Introduction. 27

6.2. Ruby CORBA mapping. 27

6.3. Download R2CORBA . 27

6.4. Define your IDL. 27

6.5. Implement a client . 27

6.6. Implement a server. 28

7. TAO IDL Compiler . 30

7.1. Generated Files . 30

7.2. Environment Variables . 30

7.3. Operation Demuxing Strategies . 31

7.4. Collocation Strategies. 32

7.5. Output File options . 32

7.6. Controlling code generation . 33

7.7. Backend options . 35

7.8. Other options . 37

8. TAO libraries. 39

9. Compression . 44

9.1. Using compression . 44

9.2. Implementing your own compressor. 46

10. Using the TAO::Transport::Current Feature . 49

10.1. Scope and Context . 49

10.2. Programmer’s Reference . 49

10.3. User’s Guide . 51

10.4. Configuration, Bootstrap, Initialization and Operation . 52

10.5. Implementation and Required Changes . 53

10.6. Client Side: Sending Requests or Replies . 53

10.7. Server Side: Request Processing. 54

10.8. Structural and Footprint Impact . 54

10.9. Performance Impact . 55

10.10. Example Code . 55

11. Security . 56

11.1. Using SSLIOP . 56

11.2. SSLIOP Options . 56

11.3. Environment variables . 57

11.4. Using the SSLIOP::Current Object . 58

12. Real Time CORBA. 61

12.1. Protocol Policies . 61

12.2. Creating the protocol properties . 63

13. CORBA/e . 66

13.1. The standard . 66

13.2. CORBA/e Compact Profile . 66

13.3. CORBA/e Micro Profile. 66

13.4. TAO support . 66

14. ACE documentation . 67

14.1. C++NPv1 . 67

14.2. C++NPv2 . 67

14.3. ACE Programmer’s Guide . 67

15. CORBA Books . 68

15.1. Advanced CORBA® Programming with C++ . 68

15.2. Pure CORBA . 68

15.3. CORBA Explained Simply . 68

16. Design books . 69

16.1. POSA2 . 69

17. C++ books . 70

17.1. The C++ Programming Language . 70

17.2. Modern C++ Design . 70

18. Frequently asked questions . 71

19. Building TAO . 73

19.1. Microsoft Visual Studio . 73

19.2. GNU make . 74

19.3. Embarcadero C++ Builder . 77

19.4. MinGW . 80

19.5. Building a host build . 81

19.6. CE GCC . 82

19.7. RTEMS . 83

19.8. From the ACE/TAO main github repository. 86

19.9. WindRiver Workbench 2.6 . 87

20. Autobuild framework. 90

Preface

This is the CORBA Programmers Guide published by Remedy IT. This guide is published for free.

Based on the user feedback and requests we will extend this guide on a regular basis.

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

Preface | 1

https://www.remedy.nl

Contact information

Remedy IT
The Netherlands

For inquiries related to our services and training you can contact us at sales@remedy.nl or check
our website.

When you have a support contract with Remedy IT you can report issues through the Remedy IT
Support Portal.

If you have remarks regarding this guide you can send your remarks to corbapg@remedy.nl.

The Remedy IT website is online at https://www.remedy.nl

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

2 | Contact information

mailto:sales@remedy.nl
https://www.remedy.nl
https://swsupport.remedy.nl
mailto:corbapg@remedy.nl
https://www.remedy.nl

Chapter 1. Remedy IT Support

For open source products Remedy IT provides flexible Open Source Support options. We provide
RS contracts for AXCIOMA, TAOX11, ACE, TAO, R2CORBA, RIDL, and OpenDDS.

With our remote support contracts we can be of assistance for solving issues and answering
questions. We provide a support contract which includes email, phone, and web-based access.

We have four different types of remote support contracts so you can choose the kind of support
that matches best your support needs:

• RS_Day

• RS_Year

• RS_Month

• RS_SLA

All RS contracts include access to the Remedy IT Software Support Portal. RS is intended for the
following type of activities:

• Bug fixing / problem resolution not requiring major redesign

• Small (relatively) functional enhancements and extensions

• Development support (i.e. supplying building, coding, optimization information, example or
prototype implementations)

For all these RS contracts it is necessary to sign a support contract which you can request by
email from sales@remedy.nl.

For more information about our support see our website.

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

Chapter 1. Remedy IT Support | 3

https://www.remedy.nl/services/opensource-support.html
mailto:sales@remedy.nl
https://www.remedy.nl

Chapter 2. Training

We provide several courses as part of our training program. These courses are organized as open
enrollment in The Netherlands but also as onsite training at a location of your choice. Check our
website for the current course schedules. At this moment we provide the following courses:

• Using the ACE C++ Framework

• Introduction to CORBA

• CORBA Programming with C++

• CORBA Programming with C++11

• Advanced CORBA Programming with TAO

• Component Based Development using AXCIOMA

If you are interested in any of these courses contact sales@remedy.nl.

2.1. Using the ACE C++ Framework

Our ACE course will learn you the concepts of ACE. Through lectures and a set of exercises using
you will get a good understanding of how you can use ACE for your application.

2.1.1. Goals

• Implement IPC mechanisms using the IPC SAP classes and the Acceptor/Connector pattern

• Utilize a Reactor in event demultiplexing and dispatching

• Implement thread-safe applications using the thread encapsulation class categories

• Identify appropriate ACE components

2.1.2. Audience

Software developers moving to distributed applications using ACE.

2.1.3. Duration

4 days

2.1.4. Prerequisites

Familiarity with the C++ language (including templates), software development in a Linux or
Windows environment, and knowledge of the client-server architecture and network programming
concepts.

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

4 | Chapter 2. Training

https://www.remedy.nl
mailto:sales@remedy.nl

2.1.5. Contents

• ACE Architecture and Components

• How to access Operating System services

• Overview of network programming interfaces

• Network programming using TCP and UDP classes in ACE

• Acceptor and Connector patterns

• Event demultiplexing with the Reactor

• Implementing event handlers for I/O, timers, and signals

• Thread management and synchronization

• Shared memory allocators and specialized local memory allocators

• Dynamic configuration with the Service Configurator

• Message Queues and Stream processing

• Logging and Debugging

2.1.6. Format

Lecture and programming exercises.

2.1.7. Material

Each student will get a print-out of all the sheets and a copy of C++NPv1 and C++NPv2, and a
copy of the ACE Programmers Guide.

2.2. Introduction to CORBA

This one day introduction will provide an overview of CORBA.

2.2.1. Goals

• The benefits of distributed objects

• CORBA’s role in developing distributed applications

• To be able to determine when and where to apply CORBA

• The development trends in CORBA

2.2.2. Audience

Software Developers and Managers who are getting started with CORBA development

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

2.2. Introduction to CORBA | 5

2.2.3. Duration

1 day

2.2.4. Prerequisites

Familiarity with to C++ and object-oriented concepts is desired.

2.2.5. Contents

• Distributed Objects

• The Object Management Group (OMG) Object Model

• Architecture of CORBA

• Interface Definition Language (IDL)

• The Object Request Broker (ORB)

• CORBA Services

• CORBA Frameworks

• Commercial tools for developing CORBA applications

• Comparison of CORBA to other distributed object standards

2.2.6. Format

Lectures.

2.2.7. Material

Each student will get a print-out of all the sheets.

2.3. CORBA Programming with C++

Our CORBA Programming with C++ course will learn you the concepts of CORBA and the IDL to
C++ language mapping. Through lectures and a set of exercises using TAOX11 you will get a good
understanding of how you can use CORBA for your application.

2.3.1. Goals

• Understand CORBA’s role in developing distributed applications

• Define CORBA interfaces using Interface Definition Language (IDL)

• Create CORBA clients and servers using C++

• Use the advanced features of the Portable Object Adapter (POA) in your applications

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

6 | Chapter 2. Training

2.3.2. Audience

Software developers who will be developing distributed applications using CORBA.

2.3.3. Duration

4 days

2.3.4. Prerequisites

Non-trivial experience with C++ and familiarity with object-oriented concepts is required.

2.3.5. Contents

• What is CORBA?

• Interface Definition Language (IDL)

• CORBA Object Overview

• IDL to C++ Mapping

• Object Reference Details

• Parameter passing Rules - In, Out, Inout, Return

• Implementing Servants

• Managing Servants

• POA Details

• Request Routing Alternatives

• The Naming Service

• The Event Service

• Advanced Topics

2.3.6. Format

Lecture and programming exercises.

2.3.7. Material

Each student will get a print-out of all the sheets and a copy of Advanced CORBA Programming
with C++ from Michi Henning & Stephen Vinoski.

2.4. CORBA Programming with C++11

Our CORBA Programming with C++11 course will learn you the concepts of CORBA and the IDL
to C++11 language mapping. Through lectures and a set of exercises using TAOX11 you will get a
good understanding of how you can use CORBA for your application.

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

2.4. CORBA Programming with C++11 | 7

2.4.1. Goals

• Understand CORBA’s role in developing distributed applications

• Define CORBA interfaces using Interface Definition Language (IDL)

• Create CORBA clients and servers using C++11

• Use the advanced features of the Portable Object Adapter (POA) in your applications

2.4.2. Audience

Software developers who will be developing distributed applications using CORBA.

2.4.3. Duration

4 days

2.4.4. Prerequisites

Non-trivial experience with C++ and familiarity with object-oriented concepts is required.

2.4.5. Contents

• What is CORBA?

• Interface Definition Language (IDL)

• CORBA Object Overview

• IDL to C++11 Mapping

• Object Reference Details

• Implementing Servants

• Managing Servants

• POA Details

• Request Routing Alternatives

• The Naming Service

• Advanced Topics

2.4.6. Format

Lecture and programming exercises.

2.4.7. Material

Each student will get a print-out of all the sheets.

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

8 | Chapter 2. Training

2.5. Advanced CORBA Programming with TAO

Our Advanced CORBA Programming with TAO course will learn you the advanced concepts of
CORBA and the TAO specific features and configuration. Through lectures and a set of exercises
using TAO you will get a good understanding of how you can use CORBA for your application.

2.5.1. Goals

• Extend and enhance your CORBA and C++ application development skills and techniques

• Use the Messaging and Real-Time CORBA features to take greater control of your CORBA
application

• Explore the internals of TAO and how its different configurations affect your application

• Learn about the Notification and Real-Time Event Services

2.5.2. Audience

CORBA developers who wish to learn more about advanced CORBA features and TAO-specific
features and configuration.

2.5.3. Duration

4 days

2.5.4. Prerequisites

Non-trivial CORBA and C++ programming experience is required.

2.5.5. Contents

• Configuring TAO Application

• Controlling Endpoints, Connections, and Protocols

• Building Multithreaded Applications with TAO

• CORBA QoS Policies

• Asynchronous Messaging

• Portable Interceptors

• Real-Time CORBA

• Using TAO’s Real-Time Event Service

• Notification Service

• TAO’s Implementation Repository

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

2.5. Advanced CORBA Programming with TAO | 9

2.5.6. Format

Lecture and programming exercises.

2.5.7. Material

Each student will get a print-out of all the sheets and a copy of TAO Developers Guide. This
course is not specific to any TAO distribution or version.

2.6. Component Based Development using AXCIOMA

This training explains the concepts behind AXCIOMA and through lectures and exercise you will
experience the benefits of a component based approach.

2.6.1. Goals

• Understand the concepts of AXCIOMA

• Define and implement components using AXCIOMA

• Understand the concepts of connectors

• Integrating DDS through DDS4CCM

• Asynchronous invocations using AMI4CCM

• Using time triggers using TT4CCM

• Deploy your system using AXCIOMA

2.6.2. Audience

Software architects and developers who want to use AXCIOMA.

2.6.3. Duration

4 days

2.6.4. Prerequisites

Non-trivial experience with C++ and familiarity with object-oriented concepts is required.

2.6.5. Contents

• AXCIOMA introduction

• What is a component?

• Application Development Lifecycle

• Component Lifecycle explained

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

10 | Chapter 2. Training

• Connectors and their place in CCM: CORBA4CCM, AMI4CCM, TT4CCM, and DDS4CCM

• Defining components using IDL3+

• Use BRIX11 APC to define, generate, and compile your project

• Basic tutorial using AXCIOMA

• Deployment and Configuration using AXCIOMA

• CCM and D&C modeling tools overview

2.6.6. Format

Lecture and programming exercises.

2.6.7. Material

Each student will get a print-out of all the sheets.

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

2.6. Component Based Development using AXCIOMA | 11

Chapter 3. Obtain your CORBA implementation

3.1. TAOX11

TAOX11 is a state of the art CORBA implementation which supports the IDL to C++11 language
mapping.

TAOX11 is a free CORBA implementation which is developed by Remedy IT. TAOX11 can be
obtained for free from Github.

3.2. R2CORBA

R2CORBA is the implementation of the Ruby CORBA Language mapping (RCLM) and is provided
as open source.

3.3. TAO

The most recent TAO release can be downloaded from Github or Vanderbilt University. There you
can download the latest minor, bug fix only, and micro version. Through a separate page you can
download any older version.

The full version ships with generated GNU makefiles and Visual Studio project files. The source
only packages lack the generated makefiles and project files and are therefor much smaller.

3.4. JacORB

JacORB is a 100% pure Java open source implementation of the OMG’s CORBA standard and is
fully compliant with the OMG IDL/Java language mapping version 2.3.

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

12 | Chapter 3. Obtain your CORBA implementation

https://www.taox11.org
https://www.remedy.nl
https://github.com/RemedyIT/axcioma
https://www.remedy.nl/opensource/r2corba.html
https://github.com/DOCGroup/ACE_TAO
http://download.dre.vanderbilt.edu
http://download.dre.vanderbilt.edu/previous_versions
http://www.jacorb.org

Chapter 4. TAOX11

4.1. Introduction

The IDL to C++ language mapping is hard to use. The IDL to C++11 resolves this completely, this
language mapping is very easy to use. TAOX11 provides a CORBA implementation using the IDL
to C++11 language mapping

This chapter explains the steps to create your first Hello world application using TAOX11. This
example can be found in the distribution under taox11/tests/hello.

TAOX11 provides a powerful logging framework which is used by this getting started.

4.2. Define your application IDL

The first step is to define your application IDL. In the IDL specification you describe the interfaces
the server delivers to its clients. Only the operations you define in IDL can be invoked by the client
application. We want to implement a method that just returns the string send and another method
to shutdown the server.

/// Put the interfaces in a module, to avoid global namespace pollution
module Test
{
 /// A very simple interface
 interface Hello
 {
 /// Return a simple string
 string get_string ();

 /// A method to shutdown the ORB
 oneway void shutdown ();
 };
};

Now you have defined your interfaces in IDL the client and server can be developed independent.
The first step is to compile the IDL file using the ridlc compiler. ridlc converts the IDL into C++
classes that are the glue between your application code and the TAOX11 libraries. The compilation
can be done using: ridlc Hello.idl After the compilation you now have HelloC.{h,cpp}
and HelloS.{h,cpp}.

4.3. Implement the server

First we are going to develop the server part. For each interface we have to implement a C++ class
that implements the in IDL defined methods. This class needs to include the generated HelloS.h
header file.

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

4.1. Introduction | 13

https://www.taox11.org

#include "HelloS.h"

We derive from the base class generated by the IDL compiler

/// Implement the Test::Hello interface
class Hello final
 : public virtual CORBA::servant_traits<Test::Hello>::base_type
{
public:
 /// Constructor
 Hello (IDL::traits<CORBA::ORB>::ref_type orb);

 std::string get_string () override;

 void shutdown () override;

private:
 /// Use an ORB reference to shutdown the application.
 IDL::traits<CORBA::ORB>::ref_type orb_;
};

The implementation of this class is as below. First the constructor which received the ORB and
stores it in a member variable which is used in the shutdown method.

#include "Hello.h"

Hello::Hello (IDL::traits<CORBA::ORB>::ref_type orb)
 : orb_ (std::move(orb))
{
}

The get_string method returns the hard coded string Hello there! to the client.

std::string
Hello::get_string (void)
{
 return "Hello there!";
}

With the shutdown method the client can shutdown the server.

void
Hello::shutdown ()
{
 this->orb_->shutdown (false);
}

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

14 | Chapter 4. TAOX11

Now we have implemented the class we need to implement the main of the server. We start with a
regular main that uses its commandline arguments and provides a try/catch block to make sure
we catch any exception.

int
main (int argc, char *argv[])
{
 try
 {

We now first initialize the ORB, retrieve the Root POA and POA Manager which we will use to
activate our servant.

IDL::traits<CORBA::ORB>::ref_type orb =
 CORBA::ORB_init (argc, argv);

IDL::traits<CORBA::Object>::ref_type poa_object =
 orb->resolve_initial_references("RootPOA");

IDL::traits<PortableServer::POA>::ref_type root_poa =
 IDL::traits<PortableServer::POA>::narrow (poa_object);

if (!root_poa)
 {
 TAOX11_TEST_ERROR
 << "ERROR: IDL::traits<PortableServer::POA>::narrow (obj)"
 << "returned null object." << std::endl;
 return 1;
 }

IDL::traits<PortableServer::POAManager>::ref_type poa_manager =
 root_poa->the_POAManager ();

Now we create our servant and activate it

CORBA::servant_traits<Test::Hello>::ref_type hello_impl;
 CORBA::make_reference<Hello> (orb);

PortableServer::ObjectId id =
 root_poa->activate_object (hello_impl);

IDL::traits<CORBA::Object>::ref_type object =
 root_poa->id_to_reference (id);

IDL::traits<Test::Hello>::ref_type hello =
 IDL::traits<Test::Hello>::narrow (object);

We now write our IOR to a file on disk so that the client can find the server.

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

4.3. Implement the server | 15

std::string ior = _orb->object_to_string (hello);

// Output the IOR to the ior_output_file
std::ofstream fos("server.ior");
if (!fos)
 {
 TAOX11_TEST_ERROR << "ERROR: failed to open file 'server.ior'" << std
::endl;
 return 1;
 }

fos << ior;
fos.close ();

Now we activate our POA Manager, at that moment the server accepts incoming requests and
then run our ORB.

poa_manager->activate ();

orb->run ();

When the run method returns we print a message that we are ready and then destroy the
RootPOA and the ORB.

root_poa->destroy (true, true);

orb->destroy ();

And we have a catch block to catch all exceptions and we use the ostream insertion support to
print the exception information to the output.

 }
catch (const std::exception& ex)
{
 TAOX11_TEST_ERROR << "exception caught: " << ex.what ()
 << std::endl;
 return 1;
}

return 0;
}

The server is now ready.

4.4. Implement the client

We implement the client application. When using TAOX11 the client is also written in C++ and

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

16 | Chapter 4. TAOX11

includes the generated HelloC.h header file.

#include "HelloC.h"

We start with a regular main that uses its commandline arguments and provides a try/catch
block to make sure we catch any exception.

int
main (int argc, char *argv[])
{

 try
 {

We now first initialize the ORB and then do a string_to_object of the IOR file that server has
written to disk. After this we do a _narrow to the derived interface.

IDL::traits<CORBA::ORB>::ref_type orb =
 CORBA::ORB_init (argc, argv);
IDL::traits<CORBA::Object>::ref_type tmp =
 orb->string_to_object("file://server.ior");
IDL::traits<Test::Hello>::ref_type hello =
 IDL::traits<Test::Hello>::narrow(tmp);

We now have to check whether we have a valid object reference or not. If we invoke an operation
on a nil object reference we will cause an access violation.

if (!hello)
 {
 TAOX11_TEST_ERROR
 << "ERROR: IDL::traits<Test::Hello>::narrow (obj) "
 << "returned null object." << std::endl;
 return 1;
 }

Now we are sure we have a valid object reference, so we invoke the get_string() operation on
the server. We have at this moment no clue how long this operation could take, it could return in
micro seconds, it could take days, this all depends on the server.

std::string the_string = hello->get_string ();

And now we print the string to standard output.

TAOX11_TEST_INFO << "hello->get_string () returned "
 << the_string << std::endl;

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

4.4. Implement the client | 17

To let this example end itself gracefully we first shutdown the server and then destroy our own
ORB.

hello->shutdown ();
orb->destroy ();

To make sure we see any exception we do have a catch statement catching these exceptions and
printing the exception information in a readable format.

}
catch (const std::exception& ex)
 {
 TAOX11_TEST_ERROR << "exception caught: " << e.what ()
 << std::endl;
 return 1;
 }

return 0;
}

4.5. Compile client and server

TAOX11 gets shipped together with a product called Make Project Creator (MPC). This tool is used
by the TAO development group to generate all project files but can also be used by you as user to
generate your own project files. The section below specifies the MPC file for this project which can
be converted to project files for your environment. First we define a custom_only project that will
compile the IDL file.

project(*idl): ridl_ostream_defaults {
 idlflags += -Sp
 IDL_Files {
 Hello.idl
 }
 custom_only = 1
}

Then we create a server and client project. The after will make sure the client and server are
build after the idl project in case you are using an environment that supports parallel builds. In the
MPC file you specify your dependencies and the files that must be compiled in the server and the
client application.

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

18 | Chapter 4. TAOX11

project(*Server): taox11_server {
 after += *idl
 Source_Files {
 Hello.cpp
 server.cpp
 }
 Source_Files {
 HelloC.cpp
 HelloS.cpp
 }
 IDL_Files {
 }
}

project(*Client): taox11_client {
 after += *idl
 Source_Files {
 client.cpp
 }
 Source_Files {
 HelloC.cpp
 }
 IDL_Files {
 }
}

This MPC file is then used to generate the project files. For For this generation you will need perl
5.8 or higher on your system. For windows users we advice Active State Perl. Generating the
project files and compiling the source code in a platform independent way can be done easily
using the brix11 tooling that is part of the TAOX11 product:

brix11 gen build -- make

4.6. Run your application

To run this application you need two command prompts or consoles. In the first one you first start
the server, normally it just starts and doesn’t give any output. If you want to get some debugging
output from the TAO libraries, add -ORBDebugLevel 5 to the commandline arguments of the
server. In the second console you now run the client, this will invoke the get_string call to the
server, print the string it gets back and it then calls shutdown on the server.

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

4.6. Run your application | 19

http://www.activestate.com/Products/ActivePerl

Chapter 5. TAO

5.1. Introduction

This chapter explains the steps to create your first Hello world application using TAO. This example
can be found in the distribution under ACE_wrappers/TAO/tests/Hello.

5.2. Define your application IDL

The first step is to define your application IDL. In the IDL specification you describe the interfaces
the server delivers to its clients. Only the operations you define in IDL can be invoked by the client
application. We want to implement a method that just returns the string send and another method
to shutdown the server.

/// Put the interfaces in a module, to avoid global namespace pollution
module Test
{
 /// A very simple interface
 interface Hello
 {
 /// Return a simple string
 string get_string ();

 /// A method to shutdown the ORB
 oneway void shutdown ();
 };
};

Now you have defined your interfaces in IDL the client and server can be developed independent.
The first step is to compile the IDL file using the TAO_IDL compiler. The TAO_IDL converts the IDL
into C++ classes that are the glue between your application code and the TAO libraries. The
compilation can be done using: tao_idl Hello.idl After the compilation you now have
HelloC.{h,cpp,inl} and HelloS.{h,cpp,inl}. If you need to TIE approach you need to
add the -GT flag to the invocation of TAO_IDL, this will create HelloS_T.{h,cpp,inl}.

5.3. Implement the server

First we are going to develop the server part. For each interface we have to implement a C++ class
that implements the in IDL defined methods. This class needs to include the generated HelloS.h
header file.

#include "HelloS.h"

We derive from the base class generated by the IDL compiler

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

20 | Chapter 5. TAO

/// Implement the Test::Hello interface
class Hello
 : public virtual POA_Test::Hello
{
public:
 /// Constructor
 Hello (CORBA::ORB_ptr orb);

 virtual char * get_string (void);

 virtual void shutdown (void);

private:
 /// Use an ORB reference to shutdown the application.
 CORBA::ORB_var orb_;
};

The implementation of this class is as below. First the constructor which received the ORB and
duplicates it to a member variable which is used in the shutdown method.

#include "Hello.h"

Hello::Hello (CORBA::ORB_ptr orb)
 : orb_ (CORBA::ORB::_duplicate (orb))
{
}

The get_string method returns the hard coded string Hello there! to the client.

char *
Hello::get_string (void)
{
 return CORBA::string_dup ("Hello there!");
}

With the shutdown method the client can shutdown the server.

void
Hello::shutdown (void)
{
 this->orb_->shutdown (0);
}

Now we have implemented the class we need to implement the main of the server. We start with a
regularly main that uses its commandline arguments and uses a try/catch block to make sure
we catch any exception.

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

5.3. Implement the server | 21

int
ACE_TMAIN (int argc, ACE_TCHAR *argv[])
{
 try
 {

We now first initialize the ORB, retrieve the Root POA and POA Manager which we will use to
activate our servant.

CORBA::ORB_var orb =
 CORBA::ORB_init (argc, argv);

CORBA::Object_var poa_object =
 orb->resolve_initial_references("RootPOA");

PortableServer::POA_var root_poa =
 PortableServer::POA::_narrow (poa_object.in ());

if (CORBA::is_nil (root_poa.in ()))
 ACE_ERROR_RETURN ((LM_ERROR,
 " (%P|%t) Panic: nil RootPOA\n"),
 1);

PortableServer::POAManager_var poa_manager =
 root_poa->the_POAManager ();

Now we create our servant and activate it

Hello *hello_impl = 0;
ACE_NEW_RETURN (hello_impl,
 Hello (orb.in ()),
 1);
PortableServer::ServantBase_var owner_transfer(hello_impl);

PortableServer::ObjectId_var id =
 root_poa->activate_object (hello_impl);

CORBA::Object_var object = root_poa->id_to_reference (id.in ());

Test::Hello_var hello = Test::Hello::_narrow (object.in ());

We now write our IOR to a file on disk so that the client can find the server. To get a real portable
server application we are using ACE for the file access.

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

22 | Chapter 5. TAO

CORBA::String_var ior = orb->object_to_string (hello.in ());

// Output the IOR to the ior_output_file
FILE *output_file= ACE_OS::fopen ("server.ior", "w");
if (output_file == 0)
 ACE_ERROR_RETURN ((LM_ERROR,
 "Cannot open output file for writing IOR: %s\n",
 ior_output_file),
 1);
ACE_OS::fprintf (output_file, "%s", ior.in ());
ACE_OS::fclose (output_file);

Now we activate our POA Manager, at that moment the server accepts incoming requests and
then run our ORB.

poa_manager->activate ();

orb->run ();

When the run method returns we print a message that we are ready and then destroy the
RootPOA and the ORB.

ACE_DEBUG ((LM_DEBUG, "(%P|%t) server - event loop finished\n"));

root_poa->destroy (1, 1);

orb->destroy ();

And we have a catch block to catch CORBA exceptions and we use the TAO specific
_tao_print_exception to print the exception information to the output.

 }
catch (const CORBA::Exception& ex)
{
 ex._tao_print_exception ("Exception caught:");
 return 1;
}

return 0;
}

The server is now ready.

5.4. Implement the client

We implement the client application. When using TAO the client is also written in C++ and includes
the generated HelloC.h header file.

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

5.4. Implement the client | 23

#include "HelloC.h"

We start with a regularly ACE_TMAIN that uses its commandline arguments and uses a
try/catch block to make sure we catch any exception.

int
ACE_TMAIN (int argc, ACE_TCHAR *argv[])
{

 try
 {

We now first initialize the ORB and then do a string_to_object of the IOR file that server has
written to disk. After this we do a _narrow to the derived interface.

CORBA::ORB_var orb = CORBA::ORB_init (argc, argv);
CORBA::Object_var tmp = orb->string_to_object("file://server.ior");
Test::Hello_var hello = Test::Hello::_narrow(tmp.in ());

We now have to check whether we have a valid object reference or not. If we invoke an operation
on a nil object reference we will cause an access violation.

if (CORBA::is_nil (hello.in ()))
 {
 ACE_ERROR_RETURN ((LM_DEBUG,
 "Nil Test::Hello reference\n"),
 1);
 }

Now we are sure we have a valid object reference, so we invoke the get_string() operation on
the server. We have at this moment no clue how long this operation could take, it could return in
micro seconds, it could take days, this all depends on the server.

CORBA::String_var the_string = hello->get_string ();

And now we print the string to standard output.

ACE_DEBUG ((LM_DEBUG, "(%P|%t) - string returned %C\n",
 the_string.in ()));

To let this example end itself gracefully we first shutdown the server and then destroy our own
ORB.

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

24 | Chapter 5. TAO

hello->shutdown ();
orb->destroy ();

To make sure we see any CORBA exception we do have a catch statement catching these
exceptions and printing the exception information in a readable format. Note that the
_tao_print_exception is a TAO specific method.

}
catch (const CORBA::Exception& ex)
 {
 ex._tao_print_exception ("Exception caught:");
 return 1;
 }

return 0;
}

5.5. Compile client and server

TAO gets shipped together with a product called Make Project Creator (MPC). This tool is used by
the TAO development group to generate all project files but can also be used by you as user to
generate your own project files. The section below specifies the MPC file for this project which can
be converted to project files for your environment. First we define a custom_only project that will
compile the idl file.

project(*idl): taoidldefaults {
 IDL_Files {
 Hello.idl
 }
 custom_only = 1
}

Then we create a server and client project. The after will make sure the client and server are
build after the idl project in case you are using an environment that supports parallel builds. In the
MPC file you specify your dependencies and the files that must be compiled in the server and the
client application.

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

5.5. Compile client and server | 25

project(*Server): taoserver {
 after += *idl
 Source_Files {
 Hello.cpp
 server.cpp
 }
 Source_Files {
 HelloC.cpp
 HelloS.cpp
 }
 IDL_Files {
 }
}

project(*Client): taoclient {
 after += *idl
 Source_Files {
 client.cpp
 }
 Source_Files {
 HelloC.cpp
 }
 IDL_Files {
 }
}

This MPC file is then used to generate the project files. For For this generation you will need perl
5.8 or higher on your system. For windows users we advice Active State Perl. Generating the
project files for GNU make can be done with the following command:

$ACE_ROOT/bin/mwc.pl -type gnuace

On Windows, with Visual C++ 14, you can generate the solution and project files with MPC:

$ACE_ROOT/bin/mwc.pl -type vc14

MPC is capable of generating more types of project types, to see a list of possible project types
use $ACE_ROOT/bin/mwc.pl -help

5.6. Run your application

To run this application you need two command prompts or consoles. In the first one you first start
the server, normally it just starts and doesn’t give any output. If you want to get some debugging
output from the TAO libraries, add -ORBDebugLevel 5 to the commandline arguments of the
server. In the second console you now run the client, this will invoke the get_string call to the
server, print the string it gets back and it then calls shutdown on the server.

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

26 | Chapter 5. TAO

http://www.activestate.com/Products/ActivePerl

Chapter 6. R2CORBA

6.1. Introduction

R2CORBA is a product developed by Remedy IT which makes it possible to implement a CORBA
client or server using the Ruby programming language. Ruby is a dynamic open source
programming language with a focus on simplicity and productivity. In the past there have been a
few attempts to implement a full ORB in Ruby which in itself is a huge amount of work because of
the large amount of features CORBA delivers. R2CORBA takes a different approach, we are using
TAO as real ORB and this is then wrapped and made accessible for the Ruby programs.

6.2. Ruby CORBA mapping

For R2CORBA we had to create an CORBA language mapping. This is available from the OMG
website.

6.3. Download R2CORBA

You can download R2CORBA for free from the Remedy IT website.

6.4. Define your IDL

As with any CORBA application we first have to define our IDL interfaces. We are going to
implement the Hello world example using Ruby, so we define an interface with a get_string()
method to retrieve a string and a shutdown() method to shutdown the server.

/// Put the interfaces in a module, to avoid global namespace pollution
module Test
{
 /// A very simple interface
 interface Hello
 {
 /// Return a simple string
 string get_string ();

 /// A method to shutdown the ORB
 /**
 * This method is used to simplify the test shutdown process
 */
 oneway void shutdown ();
 };
};

6.5. Implement a client

As part of the R2CORBA an IDL compiler for Ruby is delivered. Because Ruby is a powerful

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

6.1. Introduction | 27

http://www.ruby-lang.org
http://www.omg.org/spec/RCLM/Current
http://www.omg.org/spec/RCLM/Current
https://www.remedy.nl/opensource/r2corba.html

scripting language it is not required to precompile your IDL file to Ruby code (which you would
normally do when for example using C++). With R2CORBA you only have to specify which IDL
files you want to use. You do this using the implement method of the CORBA module. This
method will lookup the IDL file using the provided pathname and, like the Ruby require method,
process a code module only once.

require 'r2tao'
CORBA.implement('Test.idl')

The first step is to initialize the ORB using ORB_init. To the ORB_init call you can pass an array of
ORB initialization options (there is no manipulation of the argument array like with the C++
mapping).

orb = CORBA.ORB_init(["-ORBDebugLevel", 10], 'myORB')

We assume that the server has written an IOR file on disk, this is then used by the client program
to get an object reference.

obj = orb.string_to_object("file://server.ior")
hello_obj = Test::Hello._narrow(obj)

Now that we have an object reference we can invoke the get_string() operation and print the
content of the string.

the_string = hello_obj.get_string()

puts "string returned <#{the_string};>"

After this we invoke the shutdown() method on the server to let it shutdown and then we destroy
our own ORB.

hello_obj.shutdown()

orb.destroy()

6.6. Implement a server

require 'r2tao'
CORBA.implement('Test.idl', {}, CORBA::IDL::SERVANT_INTF)

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

28 | Chapter 6. R2CORBA

class MyHello < POA::Test::Hello
 def initialize(orb)
 @orb = orb
 end

 def get_string()
 ["Hello there!"]
 end

 def shutdown()
 @orb.shutdown
 end
end #of servant MyHello

orb = CORBA.ORB_init(["-ORBDebugLevel", 0], 'myORB')

obj = orb.resolve_initial_references('RootPOA')

root_poa = PortableServer::POA._narrow(obj)

poa_man = root_poa.the_POAManager

poa_man.activate

hello_srv = MyHello.new(orb)

hello_oid = root_poa.activate_object(hello_srv)

hello_obj = root_poa.id_to_reference(hello_oid)

hello_ior = orb.object_to_string(hello_obj)

open("server.ior", 'w') { |io|
 io.write hello_ior
}

orb.run

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

6.6. Implement a server | 29

Chapter 7. TAO IDL Compiler

7.1. Generated Files

The TAO IDL compiler generates by default 6 files from each .idl file, optionally it can create 3
addition files. The file names are obtained by taking the IDL basename and appending the
following suffixes (see the list of TAO’s IDL compiler options on how to get different suffixes for
these files:)

Client stubs, i.e., *C.{h,cpp,inl}. Pure client applications only need to #include and link with
these files.

Server skeletons, i.e., *S.{h,cpp,inl}. Servers need to #include and link with these files.

Server skeleton templates, i.e., *S_T.{h,cpp,inl}. These are generated optionally using the
-GT option. Some C++ compilers do not like template and non-template code in the same files, so
TAO’s IDL compiler generates these files separately.

TAO’s IDL compiler creates separate .inl and *S_T.{h,cpp,inl} files to improve
the performance of the generated code. The .inl files enable you to compile with
inlining enabled or not, which is useful for trading off compiletime and runtime performance.
Fortunately you only need to #include the client stubs declared in the *C.h file and the skeletons
declared in the *S.h file in your code.

7.2. Environment Variables

TAO IDL supports the environment variables listed in the following table.

Table 1. TAO IDL Environment Variables

Variable Usage

TAO_IDL_PREPROCESSOR Used to override the program name of the
preprocessor that TAO IDL uses

TAO_IDL_PREPROCESSOR_ARGS Used to override the flags passed to the
preprocessor that TAOIDL uses. This can be
used to alter the default options for the
preprocessor and specify things like include
directories and how the preprocessor is invoked.
Two flags that will always be passed to the
preprocessor are -DIDL and -I..

TAO_ROOT Used to determine where orb.idl is located

ACE_ROOT Used to determine where orb.idl is located

Because TAO_IDL doesn’t have any code to implement a preprocessor, it has to use an external
one. For convenience, it uses a built-in name for an external preprocessor to call. During

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

30 | Chapter 7. TAO IDL Compiler

compilation, this is how that default is set:

1. If the macro TAO_IDL_PREPROCESSOR is defined, then it will use that

2. Else if the macro ACE_CC_PREPROCESSOR is defined, then it will use that

3. Otherwise, it will use "cc"

And the same behavior occurs for the TAO_IDL_PREPROCESSOR_ARGS and
ACE_CC_PREPROCESSOR_ARGS macros.

Case 1 is used by the Makefile on most machines to specify the preprocessor. Case 2 is used on
Windows and platforms that need special arguments passed to the preprocessor (MVS, HPUX,
etc.). And case 3 isn’t used at all, but is included as a default case.

Since the default preprocessor may not always work when TAO_IDL is moved to another machine
or used in cross-compilation, it can be overriden at runtime by setting the environment variables
TAO_IDL_PREPROCESSOR and TAO_IDL_PREPROCESSOR_ARGS.

If ACE_ROOT or TAO_ROOT are defined, then TAO_IDL will use them to include the
$(ACE_ROOT)/TAO/tao or $(TAO_ROOT)/tao directories. This is to allow TAO_IDL to
automatically find orb.idl when it is included in an IDL file. TAO_IDL will display a warning
message when neither is defined.

7.3. Operation Demuxing Strategies

The server skeleton can use different demuxing strategies to match the incoming operation with
the correct operation at the servant. TAO’s IDL compiler supports perfect hashing, binary search,
and dynamic hashing demuxing strategies. By default, TAO’s IDL compiler tries to generate perfect
hash functions, which is generally the most efficient and predictable operation demuxing
technique. To generate perfect hash functions, TAO’s IDL compiler uses gperf, which is a general-
purpose perfect hash function generator.

To configure TAO’s IDL compiler to support perfect hashing please do the following:

1. Enable ACE_HAS_GPERF when building ACE and TAO. This macro has been defined for the
platforms where gperf has been tested, which includes most platforms that ACE runs on

2. Build the gperf in $ACE_ROOT/apps/gperf/src. This build also leaves a copy/link of the gperf
program at the $ACE_ROOT/bin directory

3. Set the environment variable $ACE_ROOT appropriately or add $ACE_ROOT/bin to your
search path

4. Use the -g option for the TAO IDL compiler or set your search path accordingly to install gperf
in a directory other than $ACE_ROOT/bin

Note that if you can’t use perfect hashing for some reason the next best operation demuxing
strategy is binary search, which can be configured with the option described in the following table.

Table 2. TAO_IDL Operation Demuxing Strategies

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

7.3. Operation Demuxing Strategies | 31

Option Usage

-H perfect_hash To specify the IDL compiler to generate skeleton code that uses perfect
hashed operation demuxing strategy, which is the default strategy. Perfect
hashing uses gperf program, to generate demuxing methods

-H dynamic_hash To specify the IDL compiler to generate skeleton code that uses dynamic
hashed operation demuxing strategy.

-H binary_search To specify the IDL compiler to generate skeleton code that uses binary
search based operation demuxing strategy

-H linear_search To specify the IDL compiler to generate skeleton code that uses linear
search based operation demuxing strategy. Note that this option is for
testing purposes only and should not be used for production code since
it’s inefficient

7.4. Collocation Strategies

TAO_IDL can generate collocated stubs using two different collocation strategies. It also allows
you to supress/enable the generation of the stubs of a particular strategy. To gain great flexibility at
runtime, you can gereate stubs for both collocation strategies (using both '-Gp' and '-Gd' flags at
the same time) and defer the determination of collocation strategy until runtime. On the other
hand, if you want to minimize the footprint of your program, you might want to pre-determine the
collocation strategy you want and only generate the right collocated stubs (or not generating any at
all using both '-Sp' and '-Sd' flags at the same time if it’s a pure client.) See the collocation paper
for a detail discussion on the collocation support in TAO. Note that there is a bug in TAO 1.5.x
which causes a crash when you select in runtime a collocation strategy for which the collocation
strategy hasn’t been generated by the IDL compiler (2241)

7.5. Output File options

With TAO_IDL you can control the filenames that are generated. An overview of the available
options are listed in the next table.

Table 3. TAO IDL Output File Options

Option Usage Default

-o Specify the output directory where all the
IDL compiler generated files are to be put

Current directory

-oS Same as -o option but applies only to
generated S. files

Value of -o option

-oA Same as -o option but applies only to
generated A. files

Value of -o option

-hc Client’s header file name ending C.h

-hs Server’s header file name ending S.h

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

32 | Chapter 7. TAO IDL Compiler

http://www.cs.wustl.edu/~schmidt/PDF/C++-report-col18.pdf
http://bugzilla.dre.vanderbilt.edu/show_bug.cgi?id=2241

Option Usage Default

-hT Server’s template header file name
ending

S_T.h

-cs Client stub’s file name ending C.cpp

-ci Client inline file name ending C.inl

-ss Server skeleton file name ending S.cpp

-sT Server template skeleton file name
ending

S_T.cpp

-si Server inline skeleton file name ending S.inl

-GIh Servant implementation header file name
ending

I.h

-GIs Servant implementation skeleton file
name ending

I.cpp

7.6. Controlling code generation

TAO_IDL delivers a set of options with which you can control the code generation. We have
options to generate additional code parts as listed in this table, or to suppress parts that we
generate by default but are not required for some applications as listed in this table.

Table 4. TAO_IDL Additional flags

Option Usage

-GT Enable generation of the TIE classes, and the S_T. files that contain them

-GA Generate type codes and Any operators in *A.h and *A.cpp. Decouples client and
server decisions to compile and link TypeCode- and Any-related code, which is
generated in *C.h and *C.cpp by default. If -Sa or -St also appear, then an empty
*A.h file is generated.

-GC Generate AMI stubs, "sendc_" methods, reply handler stubs, etc

-GH Generate AMH stubs, skeletons, exception holders, etc

-Gp Generated collocated stubs that use Thru_POA collocation strategy (default
enabled)

-Gd Generated collocated stubs that use Direct collocation strategy

-Gsp Generate client smart proxies

-Gt Generate optimized TypeCodes

-GX Generate empty A.h file. Used by TAO developers for generating an empty A.h file
when the -GA option can’t be used. Overridden by -Sa and -St.

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

7.6. Controlling code generation | 33

Option Usage

-Guc Generate uninlined constant if defined in a module. Inlined (assigned a value in the
C++ header file) by default, but this causes a problem with some compilers when
using pre-compiled headers. Constants declared at global scope are always
generated inline, while those declared in an interface or a valuetype never are -
neither case is affected by this option

-Gse Generate explicit export of sequence’s template base class. Occasionally needed
as a workaround for a bug in Visual Studio (.NET 2002, .NET 2003 and Express
2005) where the template instantiation used for the base class isn’t automatically
exported

-Gos Generate ostream operators for IDL declarations. Can be useful for exception
handling and debugging

-Gce Generate code targeted at CORBA/e

-Gmc Generate code targeted at Minimum CORBA

TAO IDL supports the following suppression flags. Note that all the file suppresion options don’t
check whether something is generated in the file. It just suppresses it without looking at any
possible contents

Table 5. TAO_IDL Suppression flags

Option Usage

-Sa Suppress generation of the Any operators

-Sal Suppress generation of the Any operators for local interfaces only

-Sp Suppress generation of collocated stubs that use Thru_POA collocation strategy

-Sd Suppress generation of collocated stubs that use Direct collocation strategy
(default)

-St Suppress generation of typecodes. Also suppresses the generation of the Any
operators, since they need the associated typecode

-Sm Suppress C++ code generation from CCM 'implied' IDL. This code generation is
achieved by default using a 'preprocessing' visitor that modified the AST and is
launched just before the code generating visitors. There is a new tool in CIAO that
converts the entire IDL file into one containing explicit declarations of the implied
IDL types. For such a file, we don’t want the preprocessing visitor to be launched,
so this command line option will suppress it

-SS Suppress generation of the skeleton implementation and inline file

-Sci Suppress generation of the client inline file

-Scc Suppress generation of the client stub file

-Ssi Suppress generation of the server inline file

-Ssc Suppress generation of the server skeleton file

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

34 | Chapter 7. TAO IDL Compiler

Option Usage

-Sorb Suppress generation of the ORB.h include. This option is useful when regenerating
pidl files in the core TAO libs to prevent cyclic includes

7.7. Backend options

This table described the backend options. These options have to be passed to the IDL compiler in
the format:

-Wb,optionlist

The option list is a comma-separated list of the listed backend options.

Table 6. TAO_IDL Backend Options

Option Usage

Option Usage

skel_export_macro=macro_name The compiler will emit macro_name right after
each class or extern keyword in the generated
skeleton code (S files,) this is needed for
Windows, which requires special directives to
export symbols from DLLs, usually the definition
is just a space on unix platforms.

skel_export_include=include_path The compiler will generate code to include
include_path at the top of the generated server
header, this is usually a good place to define the
server side export macro.

stub_export_macro=macro_name The compiler will emit macro_name right after
each class or extern keyword in the generated
stub code, this is needed for Windows, which
requires special directives to export symbols
from DLLs, usually the definition is just a space
on unix platforms.

stub_export_include=include_path The compiler will generate code to include
include_path at the top of the client header, this
is usually a good place to define the export
macro.

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

7.7. Backend options | 35

Option Usage

anyop_export_macro=macro_name The compiler will emit macro_name before each
Any operator or extern typecode declaration in
the generated stub code, this is needed for
Windows, which requires special directives to
export symbols from DLLs, usually the definition
is just a space on unix platforms. This option
works only in conjuction with the -GA option,
which generates Any operators and typecodes
into a separate set of files.

anyop_export_include=include_path The compiler will generate code to include
include_path at the top of the anyop file header,
this is usually a good place to define the export
macro. This option works in conjuction with the
-GA option, which generates Any operators and
typecodes into a separate set of files.

export_macro=macro_name This option has the same effect as issuing
-Wb,skel_export_macro=macro_name
-Wb,stub_export_macro=macro_name
-Wb,anyop_export_macro=macro_name. This
option is useful when building a DLL containing
both stubs and skeletons.

export_include=include_path This option has the same effect as specifying
-Wb,stub_export_include=include_path
-Wb,skel_export_include=include_path
-Wb,anyop_export_include=include_path. This
option goes with the previous option to build DLL
containing both stubs and skeletons.

pch_include=include_path The compiler will generate code to include
include_path at the top of all TAO IDL compiler
generated files. This can be used with a
precompiled header mechanism, such as those
provided by Embarcadero C++ Builder or
MSVC++.

obv_opt_accessor The IDL compiler will generate code to optimize
access to base class data for valuetypes.

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

36 | Chapter 7. TAO IDL Compiler

Option Usage

pre_include=include_path The compiler will generate code to include
include_path at the top of the each header file,
before any other include statements. For
example, ace/pre.h, which pushes compiler
options for the Embarcadero C++ Builder and
MSVC++ compilers, is included in this manner in
all IDL-generated files in the TAO libraries and
CORBA services.

post_include=include_path The compiler will generate code to include
include_path at the bottom of the each header
file. For example, ace/post.h, which pops
compiler options for the Embarcadero C++
Builder and MSVC++ compilers, is included in
this manner in all IDL-generated files in the TAO
libraries and CORBA services.

include_guard=define The compiler will generate code the define in the
C.h file to prevent users from including the
generated C.h file. Useful for regenerating the
pidl files in the archive.

safe_include=file File that the user should include instead of this
generated C.h file. Useful for regenerating the
pidl files in the archive.

unique_include=file File that the user should include instead of the
normal includes in the C.h file. Useful for
regenerating the *_include pidl files in the
archive.

7.8. Other options

Besides all the options listed in the previous sections we do have a set of other options. These are
listed in this table.

Table 7. TAO_IDL Other flags

Option Usage

-u The compiler prints out the options that are given below and exits clean

-V The compiler printouts its version and exits

-E Invoke only the preprocessor

-Wp,option_list Pass options to the preprocessor.

-d Causes output of a dump of the AST

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

7.8. Other options | 37

Option Usage

-Dmacro_definition It is passed to the preprocessor

-Umacro_name It is passed to the preprocessor

-Iinclude_path It is passed to the preprocessor

-Aassertion It is passed to the preprocessor

-Yp,path Specifies the path for the C preprocessor

-in To generate #include statements with <>'s for the standard include files (e.g.
tao/corba.h) indicating them as non-changing files

-ic To generate #include statements with ""s for changing standard include files
(e.g. tao/corba.h)

-t Temporary directory to be used by the IDL compiler. Unix: use environment
variable TEMPDIR if defined, else use /tmp/. Windows NT/2000/XP: use
environment variable TMP or TEMP if defined, else use the Windows directory

-Cw Output a warning if two identifiers in the same scope differ in spelling only by
case (default is output of error message). This option has been added as a
nicety for dealing with legacy IDL files, written when the CORBA rules for
name resolution were not as stringent.

-Ce Output an error if two identifiers in the same scope differ in spelling only by
case (default)

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

38 | Chapter 7. TAO IDL Compiler

Chapter 8. TAO libraries

As part of the subsetting effort to reduce footprint of applications using TAO, we have created
different libraries that house various CORBA features, such the POA and DynamicAny. This design
helps minimize application footprint, only linking in features that are required. However,
applications must link in the libraries they need. It is possible to load most of these libraries
dynamically using the ACE Service Configurator framework, though this will not work for statically
linked executables. Linking the necessary libraries with your application is therefore the most
straightforward way to get the features you need.

Here we outline the list of libraries in TAO core with the list of MPC projects that can be used by
the application to get all the required libraries linked into the application. The library names in table
below are base names which can get a prefix and postfix depending on your platform and
configuration. For example UNIX based systems have mostly a lib prefix and .so postfix.
Windows systems have a slightly different naming convention, e.g., the PortableServer library is
named as PortableServerd.lib and PortableServerd.dll. But for the naming conventions used on
different platforms, the contents of the libraries and the dependencies outlined below are the
same.

Table 8. List of CORE Libraries in TAO

Name of the Library Feature MPC project to use

TAO All the core features for a client and server side
ORB. The list includes support for IIOP,
invocation framework, wait strategies for
transports, leader-follower framework, thread
pools and thread-per-connection framework,
CORBA Policy framework, CDR framework, etc

taoclient

TAO_AnyTypeCode Library with all the TypeCode and Any support. If
you use the anytypecode base project the IDL
compiler flags -Sa and -St are removed from the
default idl flags.

anytypecode

TAO_BiDirGIOP Support for BiDirectional GIOP as outlined by
the CORBA spec. Please see
$TAO_ROOT/tests/BiDirectional for a simple test
case of this feature. Applications need to `
#include "tao/BiDir_GIOP/BiDirGIOP.h" ` within
their code to get this feature.

bidir_giop

TAO_CodecFactory Support for CodecFactory as outlined by the
CORBA spec. Please see
$TAO_ROOT/tests/Codec for a simple test case
of this feature. Applications need to ` #include
"tao/CodecFactory/CodecFactory.h" ` within their
code to get this feature.

codecfactory

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

Chapter 8. TAO libraries | 39

Name of the Library Feature MPC project to use

TAO_Domain Support for server side skeletons for the
DomainManager interface.

No base projects
available

TAO_DynamicAny Support for DynamicAny. Please see
$TAO_ROOT/tests/DynAny_Test for an example
of how to access and use this library.
Applications have to ` #include
"tao/DynamicAny/DynamicAny.h" ` to get the
right symbols.

dynamicany

TAO_EndpointPolicy Support for the TAO-specific Endpoint Policy.
This is used to set up constraints on endpoints
placed in IORs. The endpoint policy is applied to
a POAManager via the POAManagerFactory
and affects all POAs associated with that
manager. Examples of use are in
$TAO_ROOT/tests/POA/EndpointPolicy.
Applications have to ` #include
"tao/EndpointPolicy/EndpointPolicy.h" ` to get
the right symbols.

endpointpolicy

TAO_DynamicInterface Support for DII and DSI invocations.
Applications have to ` #include
"tao/DynamicInterface/Dynamic_Adapter_Impl.h
" ` to get the right symbols.

dynamicinterface

TAO_IFR_Client Support for client/stub side interfaces for
InterfaceRepository applications. Applications
have to ` #include
"tao/IFR_Client/IFR_Client_Adapter_Impl.h" ` to
get the right symbols.

ifr_client

TAO_ImR_Client Support for applications that want to register
itself to the Implementation Repository.
Applications have to ` #include
"tao/ImR_Client/ImR_Client.h" ` to get the right
symbols.

imr_client

TAO_IORInterceptor Support for IORInterceptor. The portable server
library depends on the IORInterceptor library.
Applications have to ` #include
"tao/IORInterceptor/IORInterceptor_Adapter_Fa
ctory_Impl.h" ` to get the right symbols.

iorinterceptor

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

40 | Chapter 8. TAO libraries

Name of the Library Feature MPC project to use

TAO_IORManipulation Support for IOR manipulation. The interfaces
offered provide operations to create and multi-
profile IOR’s and other related utilities.
Applications have to ` #include
"tao/IORManipulation/IORManip_Loader.h" ` to
get the right symbols.

iormanip

TAO_IORTable Any TAO server can be configured as an
corbaloc agent. Such agents forward requests
generated using a simple ObjectKey in a
corbaloc specification to the real location of the
object. In TAO we implement this feature by
dynamically (or statically) adding a new Object
Adapter to the ORB, that handles any sort of
request. This feature is placed in this library.
Applications have to ` #include
"tao/IORTable/IORTable.h" ` to get the right
symbols.

iortable

TAO_Messaging Support for AMI and CORBA policies such as
RoundtripTimeout and ConnectionTimeout are
placed in this library. Applications have to `
#include "tao/Messaging/Messaging.h" ` to get
the rightsymbols.

messaging

TAO_ObjRefTemplate Support for Object Reference Template
specification. The portable server library
depends on this library.

objreftemplate

TAO_PI Support for Portable Interceptors. This library is
automagically loaded by the ORB when the
application uses the PolicyFactory or
ORBInitializer . Just linking this library should be
sufficient to get all the features that are required
to write applications using portable interceptors.

pi

TAO_PortableServer Support for POA. This library is automagically
loaded by the ORB when the application calls
resolve_initial_references ("RootPOA"); Just
linking this library should be sufficient to get all
the features that are required to write powerful
servers.

taoserver

TAO_RTCORBA Support for RTCORBA client side features.
Applications are required to ` #include
"tao/RTCORBA/RTCORBA.h" ` to get the
required symbols for linking. Support in this
library is complaint with RTCORBA 1.0 spec.

rt_client

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

Chapter 8. TAO libraries | 41

Name of the Library Feature MPC project to use

TAO_RTPortableServer Support for RTCORBA server side features.
Applications are required to ` #include
"tao/RTPortableServer/RTPortableServer.h" ` to
get the required symbols for linking. Support in
this library is complaint with RTCORBA 1.0
spec.

rt_server

TAO_RTScheduling Support for RTCORBA 1.2 features.
Applications are required to ` #include
"tao/RTScheduling/RTScheulding.h" ` to get the
required symbols for linking. Support in this
library is complaint with RTCORBA 1.2 spec.

rtscheduling

TAO_SmartProxies Support for Smartproxies. smart_proxies

TAO_Strategies Support for advanced resource options for the
ORB that have been strategized into this library.
Advanced resource categories include new
transport protocols, additional reactors,
connection purging strategies etc. Applications
should ` #include
"tao/Strategies/advanced_resources.h" `.

strategies

TAO_TypeCodeFactory Support for TypeCodeFactory interface. typecodefactory

TAO_Utils Helper methods for that are useful for writing
portable, exception safe application code.

utils

TAO_Valuetype Support for object by value (OBV). Portable
server and messaging depends on this library

valuetype

TAO_CSD_Framework Support framework for Custom Servant
Dispatching (CSD) feature. The
CSD_ThreadPool depends on this library

csd_framework

TAO_CSD_ThreadPool Support for ThreadPool Custom Servant
Dispatching (CSD) Strategy. This library can be
loaded statically or dynamically. Applications are
required to ` #include
"tao/CSD_ThreadPool/CSD_ThreadPool.h" ` for
static loading and provide service configuration
file for dynamic loading.

csd_threadpool

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

42 | Chapter 8. TAO libraries

Name of the Library Feature MPC project to use

TAO_TC Support for TAO::Transport::Current - a generic
fremework for aplications that need access to
statistical information about the currently used
Transport. This library can be loaded statically or
dynamically. Applications are required to `
#include
"tao/TransportCurrent/Transport_Current.h" ` for
static loading.

tc

TAO_TC_IIOP Support for TAO::Transport::IIOP::Current - an
IIOP-specific plug-in for Transport::Current. This
library can be loaded statically or dynamically.
Applications are required to ` #include
"tao/TransportCurrent/IIOP_Transport_Current.h
" ` for static loading. Depends on libTAO_TC.so.

tc_iiop

TAO_Compression Support for Compression. This library can be
loaded statically or dynamically. Applications are
required to ` #include
"tao/Compression/Compression.h" ` for static
loading.

compression

TAO_ZlibCompressor Support for Zlib Compression. This library can
be loaded statically or dynamically. Applications
are required to ` #include
"tao/Compression/zlib/ZlibCompressor.h" ` for
static loading.

zlibcompressor

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

Chapter 8. TAO libraries | 43

Chapter 9. Compression

Starting with TAO 1.5.5 the compression library exists. With this library it is possible to compress
and decompress application data using pluggable compressors. This library is the first step in the
development of Zipped IOP (ZIOP) which adds the ability that the ORB compresses all application
data transparently that is send over a remote connection.

To be able to use compression a compressor should be available. For being able to use a
compressor the compressor factory must be registered with the ORB. The compressor factory
creates the compressors that can be used to (un)compress the data. As part of the TAO
distribution a zlib compressor gets shipped, other compressor factories can be added by
application developers.

9.1. Using compression

The include for the Compression library that must be used in the application code is as following.

#include "tao/Compression/Compression.h"

Then you have to include the compressor factories that are going to be used. The default zlib
compressor factory can be included as following.

#include "tao/Compression/zlib/ZlibCompressor_Factory.h"

As in a normal CORBA application you first have to initialise the ORB.

CORBA::ORB_var orb = CORBA::ORB_init (argc, argv);

Then you have to retrieve the CompressionManager using resolve_initial_references().

CORBA::Object_var compression_manager =
 orb->resolve_initial_references("CompressionManager");

Compression::CompressionManager_var manager =
 Compression::CompressionManager::_narrow (compression_manager.in ());

if (CORBA::is_nil(manager.in ()))
 ACE_ERROR_RETURN ((LM_ERROR,
 " (%P|%t) Panic: nil compression manager\n"),
 1);

The compression manager has no compressors by default, you have to register the compressor
factories that need to be available to your application.

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

44 | Chapter 9. Compression

Compression::CompressorFactory_ptr compressor_factory;

ACE_NEW_RETURN (compressor_factory, TAO::Zlib_CompressorFactory (), 1);

Compression::CompressorFactory_var compr_fact = compressor_factory;
manager->register_factory(compr_fact.in ());

Now all the setup has been done. When you need a compression you need to retrieve a
compressor. The number passed into the get_compresor method is the id of the compressor you
want. These predefine id’s are listed in the following table.

Table 9. Compressor Ids

Id Compressor

Compression::COMPRESSORID_GZIP gzip

Compression::COMPRESSORID_PKZIP pkzip

Compression::COMPRESSORID_BZIP2 bzip2

Compression::COMPRESSORID_ZLIB zlib

Compression::COMPRESSORID_LZMA lzma

Compression::COMPRESSORID_LZOP lzo

Compression::COMPRESSORID_RZIP rzip

Compression::COMPRESSORID_7X 7x

Compression::COMPRESSORID_XAR xar

Compression::Compressor_var compressor = manager->get_compressor (
Compression::COMPRESSORID_ZLIB);

A compressor is capable of compression Compression::Buffer as data which can contain any data
as byte array. When compression data you should pass in an out sequence to put the compressed
data in. If you want to set a safe size, take the length of the original sequence and multiple it with
1.10, this safe size can be dependent on the compressor you are using. At the moment the size is
not large enough a Compression::CompressionException will be thrown.

Compression::Buffer myout;
myout.length ((CORBA::ULong)(mytest.length() * 1.1));

compressor->compress (mytest, myout);

To decompress that data you pass in the compressed data and a second
Compression::Buffer that can be used to put the decompressed data in, this
Compression::Buffer must have a length large enough to contain the decompressed data. At
the moment then second Compression::Buffer is not large enough a

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

9.1. Using compression | 45

Compression::CompressionException will be thrown. The compressed
Compression::Buffer doesn’t contain the size of the original data, if you need this when
decompressing you have to transfer it to the function doing decompression yourself.

Compression::Buffer decompress;
decompress.length (1024);

compressor->decompress (myout, decompress);

Compression application types can be done using an Any as intermediate datatype. The Any can
then be converted to a OctetSeq using the Codec (short for coder/decoder) support of CORBA.
For information how to use the Codec see the related chapter.

9.2. Implementing your own compressor

As application developer you can add your own custom compressor. Adding a compressor will
require you implement two classes, the CompressorFactory and the Compressor itself.

The CompressorFactory is capable of creating a compressor for a given compression level. To
make the implementation of the CompressorFactory easier TAO delivers the CompressorFactory
base class that stores common functionality.

class My_CompressorFactory : public ::TAO::CompressorFactory
{
 public:
 My_CompressorFactory (void);

 virtual ::Compression::Compressor_ptr get_compressor (
 ::Compression::CompressionLevel compression_level);
 private:
 ::Compression::Compressor_var compressor_;
};

First, the constructor. This is easy, we pass our compressor id to the base class and initialize our
member to nil. The compressor id must be unique for each compression algoritm.

My_CompressorFactory::My_CompressorFactory (void) :
 ::TAO::CompressorFactory (12),
 compressor_ (::Compression::Compressor::_nil ())
{
}

The factory method that must be implemented is the get_compressor method. For simplicity we
ignore the compression_level, we just have one compressor instance for all levels.

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

46 | Chapter 9. Compression

::Compression::Compressor_ptr
Zlib_CompressorFactory::get_compressor (
 ::Compression::CompressionLevel compression_level)
{
 if (CORBA::is_nil (compressor_.in ()))
 {
 compressor_ = new ZlibCompressor (compression_level, this);
 }

 return ::Compression::Compressor::_duplicate (compressor_.in ());
}

The CompressorFactory is now ready and we start to implement the Compressor itself. For
simplifying the implementation we use the BaseCompressor helper base class. Besides the
constructor we have to implement the compress and decompress methods

class MyCompressor : public ::TAO::BaseCompressor
{
 public:
 MyCompressor (::Compression::CompressionLevel compression_level,
 ::Compression::CompressorFactory_ptr compressor_factory);

 virtual void compress (
 const ::Compression::Buffer &source,
 ::Compression::Buffer &target);

 virtual void decompress (
 const ::Compression::Buffer &source,
 ::Compression::Buffer &target);
};

The constructor just passes the values to its base, this compressor is very easy, it doesn’t need to
store any additonal data itself.

MyCompressor::MyCompressor (
 ::Compression::CompressionLevel compression_level,
 ::Compression::CompressorFactory_ptr compressor_factory) :
 BaseCompressor (compression_level, compressor_factory)
{
}

Then the compress method, we need to compress the data from the source into the target. At the
moment compression fails we must throw a Compression::CompressionException
exception.

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

9.2. Implementing your own compressor | 47

void
MyCompressor::compress (
 const ::Compression::Buffer &source,
 ::Compression::Buffer &target
)
{
 // do compression
}

The decompress method should do the opposite work of the compress method. At the moment
decompression fails then also a Compression::CompressionException must be thrown.

void
MyCompressor::decompress (
 const ::Compression::Buffer &source,
 ::Compression::Buffer &target)
{
 // do decompression
}

If you have implemented a compressor, consider contributing that back to the TAO distribution so
that other applications can also benefit from this compressor.

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

48 | Chapter 9. Compression

Chapter 10. Using the TAO::Transport::Current Feature

10.1. Scope and Context

In TAO, it is just too hard to obtain statistical or pretty much any operational information about the
network transport which the ORB is using. While this is a direct corollary of the CORBA’s design
paradigm which mandates hiding all this hairy stuff behind non-transparent abstractions, it also
precludes effective ORB and network monitoring.

The Transport::Current feature intends to fill this gap by defining a framework for developing a wide
range of solutions to this problem. It also provides a basic implementation for the most common
case - the IIOP transport.

By definition, transport-specific information is available in contexts where the ORB has selected a
Transport:

• Within Client-side interception points

• Within Server-side interception points

• Inside a Servant up-call

The implementation is based on a generic service-oriented framework, implementing the
TAO::Transport::Current interface. It is an optional service, which can be dynamically loaded. This
service makes the Transport::Current interface available through
CORBA::ORB::resolve_initial_references(). The basic idea is that whenever a
Transport is chosen by the ORB, the Transport::Current (or a derivative) will have access to that
instance and be able to provide some useful information.

10.2. Programmer’s Reference

Consider the following IDL interface, describing a Factory for producing
TAO::Transport::Traits instance, which represents transport-specific data.

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

10.1. Scope and Context | 49

#include <IOP.pidl>
#include <TimeBase.pidl>

module TAO
{
 /// A type used to represent counters
 typedef unsigned long long CounterT;

 module Transport
 {
 /// Used to signal that a call was made within improper invocation
 /// context. Also, this exception is thrown if no Transport has
 /// been selected for the current thread, for example in a
 /// collocated invocation.

 exception NoContext
 {
 };

 // The primary interface, providing access to Transport
 // information, available to the current thread.

 local interface Current
 {
 /// Transport ID, unique within the process.
 readonly attribute long id raises (NoContext);

 /// Bytes sent/received through the transport.
 readonly attribute CounterT bytes_sent raises (NoContext);
 readonly attribute CounterT bytes_received raises (NoContext);

 /// Messages (requests and replies) sent/received using the current
 /// protocol.
 readonly attribute CounterT messages_sent raises (NoContext);
 readonly attribute CounterT messages_received raises (NoContext);

 /// The absolute time (miliseconds) since the transport has been
 /// open.
 readonly attribute TimeBase::TimeT open_since raises (NoContext);
 };
 };
};

As an example of a specialized Transport::Current is the Transport::IIOP::Current, which derives
from Transport::Current and has an interface, described in the following IDL:

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

50 | Chapter 10. Using the TAO::Transport::Current Feature

#include "TC.idl"

/// Provide a forward reference for the SSLIOP::Current
module SSLIOP
{
 interface Current;
};

module TAO
{
 module Transport
 {
 module IIOP
 {
 // The primary interface, providing access to IIOP-specific
 // transport information, if it is indeed an IIOP (-like) transport
 // that has been selected.

 local interface Current : TAO::Transport::Current
 {
 /// Remote host
 readonly attribute string remote_host raises (NoContext);

 /// Remote port Using long (signed) type to better accomodate
 /// the Java mapping, which has no support for unsigned values
 readonly attribute long remote_port raises (NoContext);

 /// Local host
 readonly attribute string local_host raises (NoContext);

 /// Local port
 readonly attribute long local_port raises (NoContext);

 /// If this is a "secure" transport, this method will give you
 /// the corresponding SSLIOP::Current
 readonly attribute ::SSLIOP::Current ssliop_current raises
(NoContext);
 };
 };
 };
};

10.3. User’s Guide

The TAO::Transport::Current can be used as a base interface for a more specialized
TAO::Transport::X::Current. It is not required, however that a more specialized Current inherits
from it.

Typical, generic usage is shown in the $TAO_ROOT/orbsvcs/tests/Transport_Current/Framework
test:

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

10.3. User’s Guide | 51

// Get the Current object.
::CORBA::Object_var tcobject =
 orb->resolve_initial_references ("TAO::Transport::Current");

::TAO::Transport::Current_var tc =
 ::TAO::Transport::Current::_narrow (tcobject.in ());

if (CORBA::is_nil (tc.in ()))
 {
 ACE_ERROR ((LM_ERROR,
 ACE_TEXT ("(%P|%t) client - ERROR: Could not resolve ")
 ACE_TEXT ("TAO::Transport::Current object.\n")));

 throw ::CORBA::INTERNAL ();
 }

Another example is available from the $TAO_ROOT/tests/TransportCurrent/IIOP test. This
fragment shows how to obtain transport-specific information.

// Get the specific Current object.
CORBA::Object_var tcobject =
 orb->resolve_initial_references ("TAO::Transport::IIOP::Current");

Transport::IIOP::Current_var tc =
 Transport::IIOP::Current::_narrow (tcobject.in ());

if (CORBA::is_nil (tc.in ()))
 throw ::CORBA::INTERNAL ();

::CORBA::String_var rhost (tc->remote_host ());
::CORBA::String_var lhost (tc->local_host ());
::CORBA::Long id = tc->id ();
::TAO::CounterT bs = tc->bytes_sent ();
::TAO::CounterT br = tc->bytes_received ();
::TAO::CounterT rs = tc->messages_sent ();
::TAO::CounterT rr = tc->messages_received ();

10.4. Configuration, Bootstrap, Initialization and Operation

To use the Transport Current features the framework must be loaded through the Service
Configuration framework. For example, using something like this:

dynamic TAO_Transport_Current_Loader Service_Object *
 TAO_TC:_make_TAO_Transport_Current_Loader() ""

The Transport_Current_Loader service uses an ORB initializer to register the
TAO::Transport::Current name in a way that allows it to be resolved via
CORBA::ORB::resolve_initial_references(). The implementation is the

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

52 | Chapter 10. Using the TAO::Transport::Current Feature

TAO::Transport::Current_Impl class.

A transport-specific Traits_Factory objects are loaded like this:

dynamic TAO_Transport_IIOP_Current_Loader Service_Object *
 TAO_TC_IIOP:_make_TAO_Transport_IIOP_Current_Loader() ""

Note that any number of transport-specific Current interfaces may be available at any one time.

Whenever a Transport::Current method is invoked, a pointer to the currently selected Transport
instance must be accessible through Thread Specific Storage (TSS). For each thread, this is
managed by modifying the TAO classes, instances of which are created on the stack during
request/response processing.

10.5. Implementation and Required Changes

The primary implementation is predicated upon usage of thread specific storage (TSS) and the
guarantees C++ provides for calling the constructor and the destructor of automatic (stack-based)
objects. Some existing objects, used in TAO will have to be modified and the necessary changes,
both for client and the server side are detailed below.

10.6. Client Side: Sending Requests or Replies

The Profile_Transport_Resolver instance contains the reference to the Transport, which is the TAO
implementation structure that is needed to extract any protocol-specific information. An instance of
Profile_Transport_Resolver lives on the stack, starting inside a call to
Invocation_Adapter::invoke_remote_i(), or LocateRequest_Invocation_Adapter::invoke(). In the
case of collocated invocations no such object is created.

It is then passed around the calls that follow, except for the calls to the following Invocation_Base
methods: send_request_interception(), receive_other_interception(), receive_reply_interception(),
handle_any_exception(), handle_all_exception();

Note that these in turn call the client-side interception points and that is where information about
the transport will be needed. In order to make the transport information accessible inside those
methods, we changed Profile_Transport_Resolver and the TAO_ServerRequest classes to
incorporate an additional member:

TAO::Transport_Selection_Guard transport_;

This guard automatically keeps track of the currenty selected Transport from within its constructor
and destructor. The rest of the TC framework makes sure this pointer is stored in a thread-specific
storage, by adding an additional member to TSS_Resources:

TAO::Transport_Selection_Guard* tsg_;

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

10.5. Implementation and Required Changes | 53

The idea is to keep a pointer to the last guard on the current thread. Each guard keeps a pointer to
the previous, effectively creating a stack of transport selection guards. The stack structure ensures
both that the selection/deselection of a Transport will be correctly handled. It also ensures that, in
case the current thread temporarily changes the Transport, the previous “current” transport will be
preserved, no matter how many times such change occurs. A good example for this is a nested
up-call scenario.

Inside an interceptor, one can use the methods from Transport Current to obtain information on the
currently selected transport. The implementation simply looks up the TAO_Transport pointer via
TSS_Resources::tsg_ and obtains the requested data.

10.7. Server Side: Request Processing

On the server side, the TAO_ServerRequest instance already has a Transport pointer. The
TAO_ServerRequest lives on the stack, starting its life inside a call to
TAO_GIOP_Message_Base::process_request().

Similarly to the client-side, we changed the TAO_ServerRequest to add a field:

TAO::Transport_Selection_Guard transport_;

Operation is similar to the client-side case. In the collocated case there may not be a transport
available, so the TSS slot will be null.

Inside an interceptor then, one can use an RIR-resolved TransportCurrent to create a
specialization of TransportInfo, based on the kind of Transport used. Then they would _downcast()
it to the specific type.

10.8. Structural and Footprint Impact

As the IIOP implementation of the Transport Current functionality requires additional data to be
kept about the Transport, we added a new field to TAO_Transport:

/// Transport statistics
TAO::Transport::Stats* stats_

TAO::Transport::Stats is a simple class, which keeps track of useful statistical information about
how a transport is used:

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

54 | Chapter 10. Using the TAO::Transport::Current Feature

class TAO_Export Stats
{
public:
 Stats ();

 void messages_sent (size_t message_length);
 CORBA::LongLong messages_sent (void) const;
 CORBA::LongLong bytes_sent (void) const;

 void messages_received (size_t message_length);
 CORBA::LongLong messages_received (void) const;
 CORBA::LongLong bytes_received (void) const;

 void opened_since (const ACE_Time_Value& tv);
 const ACE_Time_Value& opened_since (void) const;

private:
 CORBA::LongLong messages_rcvd_; // 32bits not enough (?)
 CORBA::LongLong messages_sent_; // 32bits not enough (?)

 ACE_Basic_Stats bytes_rcvd_;
 ACE_Basic_Stats bytes_sent_;

 ACE_Time_Value opened_since_;
};

To gather the statistics the TAO_Transport::send_message_shared() and
TAO_Transport::process_parsed_messages() must be modified. These are non-virtual methods
and are being called as part of request and reply processing regardless of what the most derived
Transport type is. This property ensures that any specific Transport will have access to these
statistics.

10.9. Performance Impact

As the implementation of the Transport Current functionality necessitates some additional
processing on the critical path of an invocation, we are expecting a performance impact when the
functionality is being used.

It is possible at build time, to disable the functionality, so that applications only incur the penalty if
they require the features. The ORB, by default enables the Transport::Current functionality. Adding
transport_current=0 to your default.features file will disable it.

10.10. Example Code

Look at $TAO_ROOT/tests/TransportCurrent for code which illustrates and tests this
feature.

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

10.9. Performance Impact | 55

Chapter 11. Security

11.1. Using SSLIOP

11.1.1. Loading and Configuring the SSLIOP Pluggable Protocol

TAO implements SSL as a pluggable protocol. As such, it must be dynamically loaded into the
ORB. You must use a service configurator file to do this. In this case you have to create a
svc.conf file that includes:

dynamic SSLIOP_Factory Service_Object *
 TAO_SSLIOP:_make_TAO_SSLIOP_Protocol_Factory() ""
static Resource_Factory "-ORBProtocolFactory SSLIOP_Factory"

Note that TAO_SSLIOP:_make_TAO_SSLIOP_Protocol_Factory is part of the first line. This
will load the SSLIOP protocol from the library called TAO_SSL and then use that protocol in the
ORB.

11.2. SSLIOP Options

Once the SSLIOP protocol is loaded you may want to setup the private key and certificate files, the
authentication level and similar features. This is done by setting more options in the service
configurator file, for example:

dynamic SSLIOP_Factory Service_Object *
 TAO_SSLIOP:_make_TAO_SSLIOP_Protocol_Factory()"-SSLAuthenticate SERVER"

will enforce validation of the server certificate on each SSL connection. The complete list of
options is in the following table.

Table 10. SSLIOP Options

Option Description

-SSLNoProtection On the client side, this option forces request
invocations to use the standard insecure IIOP
protocol. On the server side, use of this option
allows invocations on the server to be made
through the standard insecure IIOP protocol.
Request invocations through SSL may still be
made. This option will be deprecated once the
SecurityLevel2::SecurityManager
interface as defined in the CORBA Security
Service is implemented.

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

56 | Chapter 11. Security

Option Description

-SSLCertificate FORMAT:filename Set the name of the file that contains the
certificate for this process. The file can be in
Privacy Enhanced Mail (PEM) format or ASN.1
(ASN1). Remember that the certificate must be
signed by a Certificate Authority recognized by
the client.

-SSLPrivateKey FORMAT:filename1 Set the name of the file that contains the private
key for this process. The private key and
certificate files must match. It is extremely
important that you secure your private key! By
default the OpenSSL utilities will generate pass
phrase protected private key files. The password
is prompted when you run the CORBA
application.

-SSLAuthenticate which Control the level of authentication. The
argument can be NONE, SERVER, CLIENT or
SERVER_AND_CLIENT. Due to limitations in the
SSL protocol CLIENT implies that the server is
authenticated too.

-SSLAcceptTimeout which Set the maximum amount of time to allow for
establishing a SSL/TLS passive connection, i.e.
for accepting a SSL/TLS connection. The default
value is 10 seconds. See the discussion in 1348
for the rationale behind this option.

-SSLDHParams filename1 Set the filename containing the Diffie-Hellman
parameters to be used when using DSS-based
certificates. The specified file may be a file
containing only Diffie-Hellman parameters
created by “openssl dhparam”, or it can be a
certificate containing a PEM encoded set of
Diffie-Hellman parameters.

11.3. Environment variables

The SSLIOP protocol supports the environment variables listed in this table to control its behavior.

Table 11. SSLIOP Environment Variables

Environment Variable Description

SSL_CERT_FILE filename The name of the file that contains all the trusted
certificate authority self-signed certificates. By
default it is set to the value of the
ACE_DEFAULT_SSL_CERT_FILE macro.

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

11.3. Environment variables | 57

http://bugzilla.dre.vanderbilt.edu/show_bug.cgi?id=1348

Environment Variable Description

SSL_CERT_DIR directory The name of the directory that contains all the
trusted certificate authority self-signed
certificates. By default it is set to the value of the
ACE_DEFAULT_SSL_CERT_DIR macro. This
directory must be indexed using the OpenSSL
format, i.e. each certificate is aliased with the
following link:

[source] ---- $ ln -s cacert.pem openssl x509
-noout -hash $lt; cacert.pem.0 ----

Consult the documentation of your SSL
implementation for more details.

SSL_EGD_FILE filename The name of the UNIX domain socket that the
Entropy Gathering Daemon (EGD) is listening
on.

SSL_RAND_FILE filename The file that contains previously saved state
from OpenSSL’s pseudo-random number
generator.

11.4. Using the SSLIOP::Current Object

TAO’s SSLIOP pluggable protocol allows an application to gain access to the SSL session state for
the current request. For example, it allows an application to obtain the SSL peer certificate chain
associated with the current request so that the application can decide whether or not to reject the
request. This is achieved by invoking certain operations on the SSLIOP::Current object. The
interface for SSLIOP::Current object is:

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

58 | Chapter 11. Security

http://egd.sourceforge.net

module SSLIOP
{
pragma prefix "omg.org"

 /// A DER encoded X.509 certificate.
 typedef sequence<octet> ASN_1_Cert;

 /// A chain of DER encoded X.509 certificates. The chain
 /// is actually a sequence. The sender's certificate is
 /// first, followed by any Certificate Authority
 /// certificates proceeding sequentially upward.
 typedef sequence<ASN_1_Cert> SSL_Cert;

 /// The following are TAO extensions.
pragma prefix "ssliop.tao"

 /// The SSLIOP::Current interface provides methods to
 /// gain access to the SSL session state for the current
 /// execution context.
 local interface Current : CORBA::Current
 {
 /// Exception that indicates a SSLIOP::Current
 /// operation was invoked outside of an SSL
 /// session.
 exception NoContext {};

 /// Return the certificate chain associated with
 /// the current execution context. If no SSL
 /// session is being used for the request or
 /// upcall, then the NoContext exception is
 /// raised.
 SSL_Cert get_peer_certificate_chain ()
 raises (NoContext);
 };

pragma prefix "omg.org"
};

Obtaining a Reference to the SSLIOP::Current Object

A reference to the SSLIOP::Current object may be obtained using the standard
CORBA::ORB::resolve_initial_references() mechanism with the argument
"SSLIOPCurrent". Here is an example:

int argc = 0;
CORBA::ORB_var orb = CORBA::ORB_init (argc, "", "my_orb");
CORBA::Object_var obj =
 orb->resolve_initial_references ("SSLIOPCurrent");
SSLIOP::Current_var ssliop =
 SSLIOP::Current::_narrow (obj.in ());

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

11.4. Using the SSLIOP::Current Object | 59

Examining the Peer Certificate for the Current Request Using OpenSSL Once a reference to the
SSLIOP::Current object has been retrieved, the peer certificate for the current request may be
obtained by invoking the SSLIOP::get_peer_certificate method, as follows:

// This method can throw a SSLIOP::Current::NoContext
// exception if it is not invoked during a request being
// performed over SSL.
SSLIOP::ASN_1_Cert_var cert =
 ssliop->get_peer_certificate ();

The retrieved X.509 peer certificate is in DER (a variant of ASN.1) format. DER is the on-the-wire
format used to transmit certificates between peers.

OpenSSL can be used to examine the certificate. For example, to extract and display the
certificate issuer from the DER encoded X.509 certificate, the following can be done:

#include <openssl/x509.h>
#include <iostream>

// Obtain the underlying buffer from the
// SSLIOP::ASN_1_Cert.
CORBA::Octet *der_cert = cert->get_buffer ();
char buf[BUFSIZ];

// Convert the DER encoded X.509 certificate into
// OpenSSL's internal format.
X509 *peer = ::d2i_X509 (0, &der_cert, cert->length ());
::X509_NAME_oneline (
 ::X509_get_issuer_name (peer),
 buf,
 BUFSIZ);

std::cout "Certificate issuer:" << buf << std::endl;

::X509_free (peer);

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

60 | Chapter 11. Security

http://www.openssl.org

Chapter 12. Real Time CORBA

The RTCORBA specification contains a lot of different features. This chapter will give an overview
of all the features and how to use them in the extended version of this guide

12.1. Protocol Policies

The Real Time CORBA specification contains a part describing the protocol properties. There are
some discussions within the OMG to move these protocol properties to the core spec. In addition
to TCPProtocolProperties defined by the Real-Time CORBA specification, TAO provides
configurable properties for each protocol it supports. With these properties you can tune the
underlying protocol for your application requirements. Below is a summary of all protocol
properties available in TAO. For each protocol we list the Profile Id, whether it is TAO specific, the
IDL interface, the class it implements and the method on the RTORB which you can use to create
an instance of the properties.

12.1.1. IIOP

• Protocol Profile Id: 0

• TAO specific: no

• IDL Interface: RTCORBA::TCPProtocolProperties

• Implementation class: TAO_TCP_Properties

• RTORB method: create_tcp_protocol_properties

Table 12. IIOP Protocol Properties

Attribute Default value

long send_buffer_size ACE_DEFAULT_MAX_SOCKET_BUFSIZ

long recv_buffer_size ACE_DEFAULT_MAX_SOCKET_BUFSIZ

boolean keep_alive true

boolean dont_route false

boolean no_delay true

enable_network_priority false

12.1.2. UIOP

• Protocol Profile Id: 0x54414f00U

• TAO specific: yes

• IDL Interface: RTCORBA::UnixDomainProtocolProperties

• Implementation class: TAO_UnixDomain_Protocol_Properties

• RTORB method: create_unix_domain_protocol_properties

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

12.1. Protocol Policies | 61

Table 13. UIOP Protocol Properties

Attribute Default value

long send_buffer_size ACE_DEFAULT_MAX_SOCKET_BUFSIZ

long recv_buffer_size ACE_DEFAULT_MAX_SOCKET_BUFSIZ

12.1.3. SHMIOP

• Protocol Profile Id: 0x54414f02U

• TAO specific: yes

• IDL Interface: RTCORBA::SharedMemoryProtocolProperties

• Implementation class: TAO_SharedMemory_Protocol_Properties

• RTORB method: create_shared_memory_protocol_properties

Table 14. SHMIOP Protocol Properties

Attribute Default value

Attribute Default value

long send_buffer_size ACE_DEFAULT_MAX_SOCKET_BUFSIZ

long recv_buffer_size ACE_DEFAULT_MAX_SOCKET_BUFSIZ

boolean keep_alive (not yet supported) true

boolean dont_route (not yet supported) false

boolean no_delay true

long preallocate_buffer_size not yet supported

string mmap_filename not yet supported

string mmap_lockname not yet supported

12.1.4. DIOP

• Protocol Profile Id: 0x54414f04U

• TAO specific: yes

• IDL Interface: RTCORBA::UserDatagramProtocolProperties

• Implementation class: TAO_UserDatagram_Protocol_Properties

• RTORB method: create_user_datagram_protocol_properties

Table 15. DIOP Protocol Properties

Attribute Default value

long send_buffer_size ACE_DEFAULT_MAX_SOCKET_BUFSIZ

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

62 | Chapter 12. Real Time CORBA

Attribute Default value

long recv_buffer_size ACE_DEFAULT_MAX_SOCKET_BUFSIZ

enable_network_priority false

12.1.5. SCIOP

• Protocol ProfileId: 0x54414f0EU

• TAO specific: yes

• IDL Interface: RTCORBA::StreamControlProtocolProperties

• Implementation class: TAO_StreamControl_Protocol_Properties

• RTORB method: create_stream_control_protocol_properties

Table 16. SCIOP Protocol Properties

Attribute Default value

long send_buffer_size ACE_DEFAULT_MAX_SOCKET_BUFSIZ

long recv_buffer_size ACE_DEFAULT_MAX_SOCKET_BUFSIZ

boolean keep_alive (not yet supported) true

boolean dont_route (not yet supported) false

boolean no_delay true

enable_network_priority false

12.2. Creating the protocol properties

Real-Time CORBA 1.0 does not define how protocol properties are created.
TAO_Protocol_Factory class can be used to create default ProtocolProperties for a particular
protocol given its ProfileId:

class TAO_Protocol_Properties_Factory
{
public:
 static RTCORBA::ProtocolProperties*
 create_transport_protocol_property (IOP::ProfileId id);

 static RTCORBA::ProtocolProperties*
 create_orb_protocol_property (IOP::ProfileId id);
};

The RTORB delivers a set of methods to create the different types of protocol properties. The code
fragment below shows how you can use these methods.

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

12.2. Creating the protocol properties | 63

// Retrieve the RTORB and narrow it to the derived interface
CORBA::Object_var object =
 orb->resolve_initial_references ("RTORB");

RTCORBA::RTORB_var rt_orb =
 RTCORBA::RTORB::_narrow (object.in ());

// Create the protocol properties, replace XXX with the type you want to
create
RTCORBA::XXXProtocolProperties_var protocol_properties =
 rt_orb->create_xxx_protocol_properties (....);

// Add the protocol properties to a list
RTCORBA::ProtocolList protocols;
protocols.length (1);
protocols[0].protocol_type = 0;
protocols[0].transport_protocol_properties =
 RTCORBA::ProtocolProperties::_duplicate (tcp_properties.in ());
protocols[0].orb_protocol_properties =
 RTCORBA::ProtocolProperties::_nil ();

CORBA::PolicyList policy_list;
policy_list.length (1);
policy_list[0] = rt_orb->create_client_protocol_policy (protocols);

The protocol properties can be set on different levels. The possible levels are ORB, THREAD, and
OBJECT level. The following code fragmens show how to set them at a certain level. First, let us
set the policy at ORB level.

object = orb->resolve_initial_references ("ORBPolicyManager");

CORBA::PolicyManager_var policy_manager =
 CORBA::PolicyManager::_narrow (object.in ());

policy_manager->set_policy_overrides (policy_list, CORBA::SET_OVERRIDE);

You can set them at THREAD level using the following code fragment.

object = orb->resolve_initial_references ("PolicyCurrent");

CORBA::PolicyCurrent_var policy_current =
 CORBA::PolicyCurrent::_narrow (object.in ());

policy_current->set_policy_overrides (policy_list, CORBA::SET_OVERRIDE);

And as last you can set the protocol properties at object level.

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

64 | Chapter 12. Real Time CORBA

CORBA::Object_var object = server->_set_policy_overrides (policy_list,
CORBA::SET_OVERRIDE);
server = Test::_narrow (object.in ());

Alternatively, concrete ProtocolProperties implementation classes can be instantiated directly as
needed.

TAO delivers also a non RTCORBA way of setting the send and receive buffer sizes. These can be
passed to the CORBA::ORB_init call. The options to specify are -ORBSndSock and
-ORBRcvSock. In case you use these options and RTCORBA, the RTCORBA setting do override
these options.

Protocol policies do not depend on any other RTCORBA features and can be used alone. In fact,
we plan to make protocol policies available outside RTCORBA, and better integrate them with the
Pluggable Protocols framework in the near future.

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

12.2. Creating the protocol properties | 65

Chapter 13. CORBA/e

13.1. The standard

CORBA/e dramatically minimizes the footprint and overhead of typical middleware, while retaining
the core elements of interoperability and real-time computing that support optimized distributed
systems. The CORBA/e standard contains two profiles, CORBA/e Compact and CORBA/e Micro
Profile. Tailored separately for minimal and single-chip environments, the Compact Profile and the
Micro Profile bring industry-standard interoperability and real-time predictable behavior to
Distributed Real-time and Embedded (DRE) computing. CORBA/e is available as ptc/2006-08-03.

13.2. CORBA/e Compact Profile

CORBA/e Compact Profile merges key features of standard CORBA suitable for resource-
constrained static systems (no DII, DSI, Interface Repository, or Component support) and Real-
time CORBA into a powerful yet compact middleware package that interoperates with other
CORBA clients and servers of every scale, executes with the deterministic characteristics required
of a true real-time platform, and leverages the knowledge and skills of your existing development
team through its mature industry-standard architecture.

13.3. CORBA/e Micro Profile

The CORBA/e Micro Profile shrinks the footprint even more, small enough to fit low-powered
microprocessors or digital signal processors (DSPs). This profile further eliminates the Valuetype,
the Any type, most of the POA options preserved in the Compact Profile, and all of the Real-time
functions excepting only the Mutex interface. In exchange for these limitations, the profile defines a
CORBA executable that vendors have fit into only tens of kilobytes small enough to fit onto a high-
end DSP or microprocessor on a hand-held device.

13.4. TAO support

TAO supports CORBA/e compact and micro but we have not checked all small details of the spec
to get out all required functionality. We have updated the source code of TAO to support most
global options, but we can reduce the footprint even more. To use CORBA/e compact or micro we
advice you to obtain the source only package of TAO (as described in this chapter). Then you can
add corba_e_compact=1 or corba_e_micro=1 to the default.features file and
regenerate the makefiles using MPC.

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

66 | Chapter 13. CORBA/e

http://www.omg.org/spec/CORBAe/Current

Chapter 14. ACE documentation

When using TAO you automatically also are using ACE. ACE itself is powerful and you can use
ACE also together with TAO in your application. This guide is focused on TAO, if you want to know
more about ACE we do recommend the following books.

14.1. C++NPv1

C++ Network Programming: Mastering Complexity Using ACE and Patterns (paid link) describes
how middleware and the ACE toolkit help address key challenges associated with developing
networked applications. We review the core native OS mechanisms available on popular OS
platforms and illustrate how C++ and patterns are applied in ACE to encapsulate these
mechanisms in class library wrapper facades that improve application portability and robustness.
The book’s primary application example is a networked logging service that transfers log records
from client applications to a logging server. C++NPv1 was published in mid-December, 2001. The
Table of Contents is available online.

14.2. C++NPv2

C++ Network Programming: Systematic Reuse with ACE and Frameworks (paid link) describes a
family of object-oriented network programming frameworks provided by the ACE toolkit. These
frameworks help reduce the cost and improve the quality of networked applications by reifying
proven software designs and implementations. ACE’s framework-based approach expands reuse
technology far beyond what can be achieved by reusing individual classes or even class libraries.
We describe the design of these frameworks, show how they can be applied to real networked
applications, and summarize the design rules that underlie the effective use of these frameworks.
C++NPv2 was published in early November, 2002. The Table of Contents is available online.

14.3. ACE Programmer’s Guide

APG (paid link) is a practical, hands-on guide to ACE for C++ programmers building networked
applications and next-generation middleware. The book first introduces ACE to beginners. It then
explains how you can tap design patterns, frameworks, and ACE to produce effective, easily
maintained software systems with less time and effort. The book features discussions of
programming aids, interprocess communication (IPC) issues, process and thread management,
shared memory, the ACE Service Configurator framework, timer management classes, the ACE
Naming Service, and more.

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

14.1. C++NPv1 | 67

http://www.amazon.com/exec/obidos/ASIN/0201604647/theaceorb-20
http://www.cs.wustl.edu/~schmidt/ACE/book1
http://www.amazon.com/exec/obidos/ASIN/0201795256/theaceorb-20
http://www.cs.wustl.edu/~schmidt/ACE/book2
http://www.amazon.com/exec/obidos/ASIN/0201699710/theaceorb-20

Chapter 15. CORBA Books

This chapter gives a list of other CORBA books that you can use as a reference. It is our advice
that you get a copy of all these books on your desk. Each book has its own specific topics and
value.

15.1. Advanced CORBA® Programming with C++

Advanced CORBA® Programming with C++ (paid link) is a book you must have when using
CORBA. It explains a lot of details and gives a lot of examples. The only concern is that the book
is a little bit outdated.

15.2. Pure CORBA

Pure CORBA (paid link) is a useful book that explains some of the newer features. It has example
code in C++ and Java.

15.3. CORBA Explained Simply

CORBA Explained Simply (paid link) is a very good starter book which is available for free.

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

68 | Chapter 15. CORBA Books

http://www.amazon.com/exec/obidos/ASIN/0201379279/theaceorb-20
http://www.amazon.com/exec/obidos/ASIN/0672318121/theaceorb-20
http://www.ciaranmchale.com/corba-explained-simply

Chapter 16. Design books

This chapter gives a list of other design/architecture books that you can use as a reference. It is
our advice that you get a copy of all these books on your desk. Each book has its own specific
topics and value.

16.1. POSA2

The POSA2 (paid link) book describes all major ACE design patters.

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

16.1. POSA2 | 69

http://www.amazon.com/exec/obidos/ASIN/0471606952/theaceorb-20

Chapter 17. C++ books

This chapter gives a list of C++ books that you can use as a reference. It is our advice that you get
a copy of all these books on your desk. Each book has its own specific topics and value.

17.1. The C++ Programming Language

This book (paid link) describes the C++ Language.

17.2. Modern C++ Design

This book (paid link) describes the concept of generic components within the C++ language.

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

70 | Chapter 17. C++ books

http://www.amazon.com/exec/obidos/ASIN/0201700735/theaceorb-20
http://www.amazon.com/exec/obidos/ASIN/0201704315/theaceorb-20

Chapter 18. Frequently asked questions

Question Solution

Can I use ACE/TAO/CIAO on Windows
95/98/ME?

Any version before x.5.6 can be build and used
on Windows 95/98/ME. Newer version don’t
have support for these Windows versions
anymore.

Can I use ACE/TAO/CIAO on OpenVMS? Any version after x.5.3 can be build and used on
out of the box on OpenVMS 8.2 Alpha. The
Itanium port for OpenVMS 8.3 is also ready. The
main sponsor of this port is upgrading their
production systems to Itanium and because of
that we are ending maintenance for the Alpha
port January 2009.

What is the latest version of ACE/TAO/CIAO that
is supported with Visual Studio 6?

The latest version that is supported with Visual
Studio 6 is x.5.1. Any versions after this release
won’t build anymore with Visual Studio 6.

What happened with all the C++ environment
macros?

TAO has supported for years platforms that lack
native C++ exception support. Around TAO 1.4.8
we identified several problems with the support
for emulated exceptions. At that moment the
macros where deprecated and we didn’t
maintain them anymore. Because no party was
interested in funding the maintenance of the
support for platforms lacking native C++
exceptions the macros where fully removed from
the TAO source code. With TAO 1.5.6 part of the
macros where removed, with TAO 1.5.7 all
environment macros are removed.

I am using TAO with SSLIOP but can’t retrieve
the peer certificate, what do I do wrong?

There is a known bug in TAO 1.5.{2,3,4,5,6}
which caused that when you retrieve the peer
certificate you get an exception or no data. This
bug has been fixed in TAO 1.5.7 and newer.

How do I get a TAO logfile that has timestamps? From TAO 1.4.1 you can pass
-ORBVerboseLogging 2 to the ORB_init call
to add a timestamp to each log line.

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

Chapter 18. Frequently asked questions | 71

Question Solution

I am using Fedora Core 6, Fedora Core 7, or
RedHat Enterprise 5 and I do get unresolved
externals on ACE_Obstack_T, what can I do?

Fedora Core 6, Fedora Core 7, and RedHat
Enterprise 5 get shipped with GCC 4.1.{1,2}
which has a fix for a problem we encountered in
the past. The workaround for this problem now
causes the problem. For ACE/TAO/CIAO x.5.10
and earlier you have to enable a workaround,
with x.6 we do automatically detect the
problematic GCC versions with FC6, FC7, and
RHEL5. You have to enable the workaround
using the following in your config.h file using
#define
ACE_GCC_HAS_TEMPLATE_INSTANTIATION_
VISIBILITY_ATTRS 1

How do I enable or disable the expansion of the
ACE_DEBUG macro?

If you want to enable the expansion of the
ACE_DEBUG macro use the following in your
config.h file and recompile ACE using #define
ACE_NDEBUG 0 to enable it or #define
ACE_NDEBUG 1 to disable it

I can’t unpack the distribution on Solaris, what is
happening?

The distribution is created with GNU tar, the
Solaris tar can’t handle this tar file and will fail.
Download the GNU tar from Sunfreeware.com
and use that tar utility.

What is the latest version of ACE/TAO/CIAO that
is maintained for VxWorks 5.5.x?

The latest version is x.6.6. After this micro we
did end the daily maintenance due to the lack of
funding for this effort. Reinstating this port is
technically possible but needs funding.

I am getting unresolved externals when building
soreduce on Ubuntu 7.04

This is a known problem in the GNU toolchain of
Ubuntu 7.04. This can be resolved by adding
no_hidden_visibility=1 to your
platform_macros.GNU file. This is not
needed anymore if you are using
ACE/TAO/CIAO x.6.2 or newer.

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

72 | Chapter 18. Frequently asked questions

http://www.sunfreeware.com

Chapter 19. Building TAO

Dependent on your operating system, compiler and your requirements there are different ways
how to build TAO. This chapter gives an overview of the different types of build you can perform.

19.1. Microsoft Visual Studio

ACE contains project files for Microsoft Visual Studio 2017 (vc141), and Visual Studio 2019
(vc142). Visual Studio supports building for desktop/server Windows as well as for Windows CE
and Windows Mobile. Since not all users will be interested in the CE/Mobile capability, these
platforms have separate solution and project files from the desktop/server Windows. Furthermore,
vc141 and vc142 use different file formats but the same file suffixes (.sln and .vcproj). To support
both environments, ACE supplies files with different names for the different development and
target platforms. The platform/name mapping is shown in the following table. All solution files have
a .sln suffix and all project files have a .vcproj suffix.

Table 17. MSVC Solutions

Platform Filename

Visual Studio 2017 for desktop/server name_vs2017

Visual Studio 2019 for desktop/server name_vs2019

In order to compile ACE/TAO using Visual Studio use the following steps:

• Decompress the ACE distribution into a directory, where it will create a ACE_wrappers
directory containing the distribution. The ACE_wrappers directory will be referred to as
ACE_ROOT in the following steps so ACE_ROOT\ace would be C:\ACE_wrappers\ace if
you decompressed into the root directory.

• Add the ACE_wrappers\lib location as full path to the PATH system environment variable.

• Create a file called config.h in the ACE_ROOT\ace directory that contains:

#include "ace/config-win32.h"

• The static, DLL and MFC library builds are kept in different workspaces. Workspaces DLL
builds will be available through the stock release at DOC group’s website. The workspaces
for static and MFC are not available and have to be generated using MPC. Please see
MPC’s README for details.

• Now load the solution file for ACE (ACE_ROOT/ACE_vs2019.sln).

• Make sure you are building the configuration (i.e, Debug/Release) the one you’ll use (for
example, the debug tests need the debug version of ACE, and so on). All these different
configurations are provided for your convenience. You can either adopt the scheme to build
your applications with different configurations, or use ace\config.h to tweak with the
default settings on Windows. Note: If you use the dynamic libraries, make sure you include
ACE_ROOT\lib in your PATH whenever you run programs that uses ACE. Otherwise you

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

19.1. Microsoft Visual Studio | 73

may experience problems finding ace.dll or aced.dll.

• If you want to use the standard C++ headers (iostream, cstdio, etc) that comes with MSVC,
then add the line:

#define ACE_HAS_STANDARD_CPP_LIBRARY 1

before the #include statement in ACE_ROOT\ace\config.h.

• To use ACE with MFC libraries, also add the following to your config.h file. Notice that if you
want to spawn a new thread with CWinThread, make sure you spawn the thread with
THR_USE_AFX flag set.

#define ACE_HAS_MFC 1

By default, all of the ACE projects use the DLL versions of the MSVC runtime libraries. You can
still choose use the static (LIB) versions of ACE libraries regardless of runtime libraries. The
reason we chose to link only the dynamic runtime library is that almost every Windows system has
these library installed and to save disk space. If you prefer to link MFC as a static library into ACE,
you can do this by defining ACE_USES_STATIC_MFC in your config.h file. However, if you would
like to link everything (including the MSVC runtime libraries) statically, you’ll need to modify the
project files in ACE yourself.

• Static version of ACE libraries are built with ACE_AS_STATIC_LIBS defined. This macro
should also be used in application projects that link to static ACE libraries

Optionally you can also add the line

#define ACE_NO_INLINE

before the #include statement in ACE_ROOT\ace\config.h to disable inline function and reduce the
size of static libraries (and your executables.)

• ACE DLL and LIB naming scheme:

We use the following rules to name the DLL and LIB files in ACE when using MSVC.

"Library/DLL name" + (Is static library ? "s" : "") + (Is Debugging enable ? "d" : "") + {".dll"|".lib"}

19.2. GNU make

Here’s what you need to do to build ACE using GNU Make:

• Install GNU make 3.79.1 or greater on your system. You must use GNU make when using
ACE’s traditional per-platform configuration method or ACE won’t compile.

• Add an environment variable called ACE_ROOT that contains the name of the root of the
directory where you keep the ACE wrapper source tree. The ACE recursive Makefile scheme

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

74 | Chapter 19. Building TAO

needs this information. If you build TAO you also need to set TAO_ROOT.

• Create a configuration file, $ACE_ROOT/ace/config.h, that includes the appropriate
platform and compiler specific header configurations from the ACE source directory. For
example:

#include "ace/config-linux.h"

The platform and compiler-specific configuration file contains the #defines that are used
throughout ACE to indicate which features your system supports. If you desire to add some site-
specific or build-specific changes, you can add them to your config.h file, place them before the
inclusion of the platform-specific header file.

There are config files for most versions of UNIX, see this table for an overview of the available
config files. If there isn’t a version of this file that matches your platform/compiler, you’ll need to
make one. Please send email to the ace-users list if you get it working so it can be added to the
master ACE release.

• Create a build configuration file,
$ACE_ROOT/include/makeinclude/platform_macros.GNU, that contains the
appropriate platform and compiler-specific Makefile configurations, e.g.,

include $(ACE_ROOT)/include/makeinclude/platform_linux.GNU

This file contains the compiler and Makefile directives that are platform and compiler-specific. If
you’d like to add make options, you can add them before including the platform-specific
configuration. See this table for an overview of the available platform files. In the following table
there is an overview of some of the flags you can specify in your platform_macros.GNU file.

NOTE
There really is not a # character before 'include' in the platform_macros.GNU file. #
is a comment character for GNU make.

• Because ACE builds shared libraries, you’ll need to set LD_LIBRARY_PATH (or equivalent
for your platform) to the directory where binary version of the ACE library is built into. For
example, you probably want to do something like the following:

export LD_LIBRARY_PATH=$ACE_ROOT/lib:$LD_LIBRARY_PATH

• When all this is done, hopefully all you’ll need to do is type:

make

at the ACE_ROOT directory. This will build the ACE library, tests, the examples, and the sample
applications. Building the entire ACE release can take a long time and consume lots of disk space,
however. Therefore, you might consider cd’ing into the $ACE_ROOT/ace directory and running

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

19.2. GNU make | 75

make there to build just the ACE library. As a sanity check, you might also want to build and run
the automated one-button tests in $ACE_ROOT/tests. Finally, if you’re also planning on building
TAO, you should build the gperf perfect hash function generator application in
$ACE_ROOT/apps/gperf/src.

Table 18. Available config files

File Description

config-aix-5.x.h AIX 5

config-cygwin32.h Cygwin

config-hpux-11.00.h HPUX 11i v1/v2/v3

config-linux.h All linux versions

config-openvms.h OpenVMS 8.2 and 8.3 on Alpha and IA64

config-netbsd.h NetBSD

config-sunos5.8.h Solaris 8

config-sunos5.9.h Solaris 9

config-sunos5.10.h Solaris 10

config-vxworks5.x.h VxWorks 5.5.{1,2}

config-vxworks6.2.h VxWorks 6.2

config-vxworks6.3.h VxWorks 6.3

config-vxworks6.4.h VxWorks 6.4

config-vxworks6.5.h VxWorks 6.5

config-vxworks6.6.h VxWorks 6.6

config-vxworks6.7.h VxWorks 6.7

Table 19. Available platform files

File Description

platform_aix_g++.GNU AIX with the GCC compiler

platform_aix_ibm.GNU AIX with the IBM compiler

platform_cygwin32.GNU Cygwin

platform_hpux_aCC.GNU HPUX with the HP aCC compiler

platform_hpux_gcc.GNU HPUX with the GCC compiler

platform_linux.GNU All linux versions with the GCC compiler

platform_linux_icc.GNU All linux versions with the Intel C++ compiler

platform_openvms.GNU OpenVMS with the HP compiler

platform_sunos5_g++.GNU Solaris with the GCC compiler

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

76 | Chapter 19. Building TAO

File Description

platform_sunos5_sunc++.GNU Solaris with the Sun compiler

platform_vxworks5.5.x.GNU VxWorks 5.5.{1,2} with the GCC compiler

platform_vxworks6.2.GNU VxWorks 6.2 with the GCC compiler

platform_vxworks6.3.GNU VxWorks 6.3 with the GCC compiler

platform_vxworks6.4.GNU VxWorks 6.4 with the GCC and Diab compiler

platform_vxworks6.5.GNU VxWorks 6.5 with the GCC and Diab compiler

platform_vxworks6.6.GNU VxWorks 6.6 with the GCC and Diab compiler

platform_vxworks6.7.GNU VxWorks 6.7 with the GCC and Diab compiler

Table 20. GNU make options

Opton Description

buildbits={32 or 64} Build 32 or 64bit

inline={0 or 1} Inlining disable or enabled

debug={0 or 1} Debugging disable or enabled

optimize={0 or 1} Optimizations disable or enabled

exceptions={0 or 1} C++ exceptions disable or enabled

static_libs_only=1 Only build static libraries

xt=1 Build with Xt (X11 Toolkit) support

fl=1 Build with FlTk (Fast Light Toolkit) support

tk=1 Build with Tk (Tcl/Tk) support

qt=1 Build with Qt (Trolltech Qt) support

ssl=1 Build with OpenSSL support

rapi=1 Build with RAPI

stlport=1 Build with STLPort support

rwho=1 Build with rwho, this results in building apps/drwho

wfmo=1 Build with wfmo support (Win32 only)

winregistry=1 Build with windows registry support (Win32 only)

winnt=1 Build WinNT-specific projects (Win32 only)

19.3. Embarcadero C++ Builder

Before building ACE/TAO you should check your C++ Builder installation to see if it is supported.
An overview of the supported Embarcadero C++ compilers is available at the Remedy IT website.

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

19.3. Embarcadero C++ Builder | 77

https://www.remedy.nl/opensource/emb.html

If your C++ Builder compiler is not on the supported version list it will probably not be possible to
build ACE/TAO

19.3.1. Building the libraries

Follow the steps below to build the libraries with C++ Builder.

• Decompress the ACE distribution into a directory, where it will create an ACE_wrappers
directory containing the source. The ACE_wrappers directory will be referred to as
ACE_ROOT in the following steps so ACE_ROOT\ace would be C:\ACE_wrappers\ace
when you decompressed into the root directory.

• Create a file called config.h in the ACE_ROOT\ace directory that contains:

#include "ace/config-win32.h"

• Open a Command Prompt (DOS Box).

• Set the ACE_ROOT environment variable to point to the ACE_wrappers directory. For
example:

set ACE_ROOT=C:\ACE_wrappers

• Change to the ACE_ROOT\ace directory.

• Build release DLLs for ACE by invoking:

make -f Makefile.bmak all

The make should be the Embarcadero make, not the GNU make utility. You can set additional
environment variables to build a different version of ACE, see the following table for an overview of
the supported environment variables.

• Optionally install the ACE header files, libraries and executables for use in your applications.
Here we are installing them into C:\ACETAO:

make -f Makefile.bor -DINSTALL_DIR=C:\ACETAO install

Note that when you run make in a sub directory you give make -f Makefile.bor all. The
all is needed to make sure the complete project is build.

Table 21. Embarcadero Environment Variables

Variable Description

DEBUG=1 Build a debug version

RELEASE=1 Build a release version

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

78 | Chapter 19. Building TAO

Variable Description

STATIC=1 Build a static version

UNICODE=1 Build an unicode version

CODEGUARD=1 Build a version with Codeguard support. Should only be used when
DEBUG is also set

CPU_FLAG=-6 Build a version optimized for a certain CPU. For this there are special
compiler flags (-3/-4/-5/-6), see the Embarcadero help for more info.

19.3.2. Building the ACE regression tests

Before you can build the tests you need to build the protocols directory. Change the directory to
ACE_ROOT\protocols and start the build with:

make -f Makefile.bmak all

The tests are located in ACE_ROOT\tests, change to this directory. You build then the tests with
the following command:

make -f Makefile.bmak all

Once you build all the tests, you can run the automated test script using:

perl run_test.pl

in the tests directory to try all the tests. You need to make sure the ACE bin and lib directory (in
this case ACE_ROOT\bin and ACE_ROOT\lib) are on the path before you try to run the tests.

19.3.3. Using VCL

You can use ACE/TAO in a VCL application but there are some specific requirements set by the
VCL environment. You have to make sure the ACE library is initialized before the VCL libraries and
cleanup of the ACE library happens after the VCL library. This can be achieved by using the
following code for your WinMain

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

19.3. Embarcadero C++ Builder | 79

#pragma package(smart_init)

void ace_init(void)
{
#pragma startup ace_init
 ACE::init();
}

void ace_fini(void)
{
#pragma exit ace_fini
 ACE::fini();
}

WINAPI WinMain(HINSTANCE, HINSTANCE, LPSTR, int)
{
 // ...
}

19.4. MinGW

MinGW delivers the GCC compiler for the Windows platform with the ability to use the Win32 API.
The first step is install MinGW by following the following steps.

• Download the installer from www.mingw.org

• Install the standard selection with C++ added, don’t install the make utility

• Download MSYS from www.mingw.org

• Install MSYS and in the post setup point it to the location of MinGW

Now you have done this, we can build for MinGW. Be aware that MinGW hasn’t been maintained
for a long time, but for the x.6 release of ACE/TAO we have made sure you can build ACE/TAO out
of the box. Extract the distribution and from the MSYS shell go to the ACE_wrappers directory.
Now give:

export ACE_ROOT=`pwd`
export TAO_ROOT=$ACE_ROOT/TAO

Create the file $ACE_ROOT/ace/config.h with the contents:

#include "ace/config-win32.h"

Create the file $ACE_ROOT/include/makeinclude/platform_macros.GNU.

include $(ACE_ROOT)/include/makeinclude/platform_mingw32.GNU

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

80 | Chapter 19. Building TAO

http://www.mingw.org
http://www.mingw.org

If you want to use the ACE QoS library you need to regenerate the GNU makefiles. Create the file
bin/MakeProjectCreator/config/default.features with the contents:

qos=1

Now regenerate the GNU makefiles by using MPC (make sure ACE_ROOT and TAO_ROOT are
both set)

perl bin/mwc.pl -type gnuace

When you only want to build ACE, give make in the $ACE_ROOT/ace directory. If you want to build
the full package, give make in the $ACE_ROOT directory. A known problem is that the
performance test $TAO_ROOT/performance-tests/POA/Demux doesn’t compile. This is because of
a stack overflow in the GCC compiler which has been reported to the MinGW maintainers. When
you want to do a MinGW autobuild using a schedule task you need to execute the build with a
special setup. First, create a batch file mingw_build.bat with the following contents.
mingw.xml is the autobuild config file that you have made.

cd /c/ACE/autobuild
svn up
cd /c/ACE/autobuild/configs/autobuild/remedynl
perl /c/ACE/autobuild/autobuild.pl mingw.xml

Then the batch file to schedule is called mingw.bat and has the contents:

echo "/c/ACE/autobuild/configs/autobuild/remedynl/mingw_build.bat" |
C:\msys\1.0\bin\sh --login -i

19.5. Building a host build

Cross compilation is a setup where you build TAO and your application on one architecture and
deploy it on a different architecture. An example setup is use an Intel Linux host and a VxWorks
PPC target, a different example is using an Intel Linux host and a Intel RTEMS target. For such
setups you will need a host build of ACE/TAO to provide at least gperf and tao_idl. This chapter
describes the steps you have to take to setup a minimal host build using a Linux based system.

Start by downloading a distribution from http://download.dre.vanderbilt.edu. Extract the ACE+TAO
distribution to a new directory (for example ACE/host)

Go to the ACE_wrappers/ directory and give:

export ACE_ROOT=`pwd`
export TAO_ROOT=$ACE_ROOT/TAO

Create the file $ACE_ROOT/ace/config.h with the contents below when you use a Linux host. If

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

19.5. Building a host build | 81

http://download.dre.vanderbilt.edu

you have a different host system, see this table for the other files you can include.

#include "ace/config-linux.h"

Create the file $ACE_ROOT/include/makeinclude/platform_macros.GNU with the
contents below. If you have a different host system, see the following table for the other files you
can include.

static_libs_only=1
debug=0
inline=0
optimize=0
include $(ACE_ROOT)/include/makeinclude/platform_linux.GNU

If you are using TAO we only need to build a subset of ACE/TAO, to do this, we create the file
$ACE_ROOT/TAO_Host.mwc with the contents below.

workspace {
 $(ACE_ROOT)/ace
 $(ACE_ROOT)/apps/gperf/src
 $(TAO_ROOT)/TAO_IDL
}

Now we have to run MPC to generate just the project files for one of these workspaces

perl bin/mwc.pl TAO_Host.mwc -type gnuace

And now we can build the host tree using GNU make. This will then only build this specific subset
of libraries and executables.

For the cross build itself we now have to refer to this host build. You can do this by specifying the
location of the host build as HOST_ROOT in the environment or into the platform_macros.GNU
file.

19.6. CE GCC

With CE GCC we have to do a cross build. When you want to compile TAO you first need to setup
a host build, from this host build we use the gperf and TAO_IDL tools in the cross build. In the host
build section we describe the steps to setup a host build, first follow the steps described there to
setup a host build.

Now you have done this, we can build for CE GCC. For this we extract another tree for example to
ACE/cegcc.

First we go to ACE/cegcc/ACE_wrappers and give:

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

82 | Chapter 19. Building TAO

export ACE_ROOT=`pwd`
export TAO_ROOT=$ACE_ROOT/TAO

Create the file $ACE_ROOT/ace/config.h with the contents:

#define TEST_DIR ACE_TEXT ("/network/temp/ACE_wrappers/tests/")
#define ACE_DEFAULT_TEST_DIR ACE_TEXT ("/network/temp/ACE_wrappers/tests/")
#include "ace/config-win32.h"

The TEST_DIR and ACE_DEFAULT_TEST_DIR is used as directory where the tests store their
log files in the log directory. This is needed because CE lacks the concept of a current directory.

Create the file $ACE_ROOT/include/makeinclude/platform_macros.GNU

wince=1
uses_wchar=1
inline=0
include $(ACE_ROOT)/include/makeinclude/platform_cegcc.GNU

Create the file $ACE_ROOT/bin/MakeProjectCreator/config/default.features

qos=1
wince=1
uses_wchar=1

You will have to generate the GNU makefiles for CEGCC using

perl $ACE_ROOT/bin/mwc.pl -type gnuace

When MPC is ready you can compile ACE/TAO using GNU make.

19.7. RTEMS

With RTEMS we have to do a cross build. The first step is to setup a host build, from this host build
we use the gperf and TAO_IDL tools in the cross build. In the host build section we describe the
steps to setup a host build, first follow the steps described there to setup a host build.

Now you have done this, we can build for RTEMS. For this we extract another tree for example to
ACE/rtems. First, you need to setup where RTEMS is installed by setting the following
environment variable RTEMS_MAKEFILE_PATH (see RTEMS documentation for its exact meaning)

Then we go to ACE/rtems/ACE_wrappers and give:

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

19.7. RTEMS | 83

export ACE_ROOT=`pwd`
export TAO_ROOT=$ACE_ROOT/TAO

Create the file $ACE_ROOT/ace/config.h with the contents:

#include "ace/config-rtems.h"

Create the file $ACE_ROOT/include/makeinclude/platform_macros.GNU, where
HOST_ROOT is the location of the host build above (update the location if you have a different
directory setup)

HOST_ROOT := /home/build/ACE/host/ACE_wrappers
inline=0
include $(ACE_ROOT)/include/makeinclude/platform_rtems.x_g++.GNU

For minimal footprint you can use the ace_for_tao subsetting feature which means that only the
part of the ACE library is build that is required for TAO. To use this feature create the file
bin/MakeProjectCreator/config/default.features with the contents:

ace_for_tao=1

And to the platform_macros.GNU file above you have to add on the first line:

ace_for_tao=1

If you have a RTEMS configuration with network support enabled you can build the full distribution
without problems, but if you have disabled networking then only a subset of all the code is build
daily.

19.7.1. Additional steps when building RTEMS without network

The following steps are additional when you build WITHOUT network support. The fact whether
you have network support enabled or disabled is automatically detected by the ACE make
infrastructure.

To the config.h file add the following defines which disable all custom protocols that are not usable
and enable COIOP which has been designed to work without network support.

#define TAO_HAS_IIOP 0
#define TAO_HAS_UIOP 0
#define TAO_HAS_DIOP 0
#define TAO_HAS_SHMIOP 0
#define TAO_HAS_COIOP 1

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

84 | Chapter 19. Building TAO

Then you have to create the subset with the file ACE_wrappers/rtems.mwc.

workspace {
ace
TAO/tao
TAO/tests/COIOP
TAO/orbsvcs/orbsvcs/CosNaming.mpc
TAO/orbsvcs/orbsvcs/CosNaming_Skel.mpc
TAO/orbsvcs/orbsvcs/CosNaming_Serv.mpc
TAO/orbsvcs/tests/COIOP_Naming_Test
TAO/orbsvcs/orbsvcs/Svc_Utils.mpc
}

Then regenerate the GNUmakefiles using

perl bin/mwc.pl rtems.mwc -type gnuace

Then after this you can give a make and only build the parts that needed when building without
network support.

19.7.2. Test output to the screen

All ACE tests try to write to a logfile but some systems don’t have a disk. With the following lines in
the config.h file the output will go to the screen

#define ACE_START_TEST(NAME) const ACE_TCHAR *program = NAME; \
 ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("(%P|%t) Starting %s test at %D\n"), NAME))
#define ACE_END_TEST ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("(%P|%t) Ending %s test
t %D\n"), program));

19.7.3. Cleaning a build

To clean a build give:

make realclean

We advice to rebuild everything when you have made a change in ACE or TAO to prevent strange
problems because of conflicting libraries.

19.7.4. Using Bochs

We have used Bochs as virtual pc to test the RTEMS port of ACE/TAO (works on Linux and
Windows hosts), you can obtain it from the Bochs website.

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

19.7. RTEMS | 85

http://bochs.sourceforge.net/getcurrent.html

19.8. From the ACE/TAO main github repository

It is possible as user of ACE/TAO to clone a version from the github repository and have a look at
work in progress. An important note is that the doc_group doesn’t advice to use the git version for
any real projects. It is available to look at changes but there is no support for any code you get
directly from the repository.

19.8.1. Using git to clone the main repository

For cloning the github repository use:

git clone https://github.com/DOCGroup/ACE_TAO

For MPC:

git clone https://github.com/DOCGroup/MPC

19.8.2. Creating Makefiles/Solutions

In the github repository no GNUmakefiles and project files for building on the various platforms are
available. If you build from git you have to generate these makefiles before building ACE/TAO. For
this generation you will need perl 5.8 or higher on your system. For windows users we advice
Active State Perl.

To build ACE and associated tests, examples, and associated utility libraries with GNUmakefiles,
you must generate GNUmakefiles with MPC:

$ACE_ROOT/bin/mwc.pl -type gnuace ACE/ACE.mwc

On Windows, with Visual Studio 2017, you must generate solution and project files with MPC:

$ACE_ROOT/bin/mwc.pl -type vs2017 ACE/ACE.mwc

MPC is capable of generating more types of project types, to see a list of possible project types
use:

$ACE_ROOT/bin/mwc.pl -help

When you only want to generate the project files for the core libraries then instead of
ACE/ACE.mwc use TAO/TAO_ACE.mwc

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

86 | Chapter 19. Building TAO

http://www.activestate.com/Products/ActivePerl

19.9. WindRiver Workbench 2.6

Starting with ACE/TAO x.6.3 it is possible to generate project files for the WindRiver Workbench
version 2.6 (VxWorks 6.4). We have validated the MPC support for the ACE lib, TAO libs and the
TAO tests. It could be that there are some features that are not generated yet, if you encounter
contact us to get a quote for extending the generator to your needs.

With VxWorks we have to do a cross build. The first step is to setup a host build, from this host
build we use the gperf and TAO_IDL tools in the cross build. In the host build section we describe
the steps to setup a host build, first follow the steps described there to setup a host build.

The Workbench is using eclipse as framework and then has several WindRiver specific
extensions. Part of the generation done by MPC is then specifically for the WindRiver tools, part is
for the eclipse environment. The Workbench uses the fixed project filenames .project,
.wrproject, and .wrmakefile. In the .project file the files in the project are listed, in the
.wrproject the compiler and linker flags are defined, and in the .wrmakefile the custom build
rules are defined, like triggering the IDL compiler. By default the files are generated in the same
directory as the MPC file. When you have multiple projects in one directory you have to add
-make_coexistence to the invocation of mwc.pl Then for each project a new subdirectory will
be created to store the files the workbench needs. If you run mwc.pl -make_coexistence from
the ACE_wrappers directory you will get a lot of subdirectories in your tree.

By default we generate for the flexible build support, when you want to use standard build use
-value_template standard_build=1.

To get a project with all dependencies create a new workspace file, f.e. vxworks.mwc

workspace vxworks {
 ace
 TAO/tao
 TAO/tests/Hello
}

You should generate the project files from a VxWorks development shell or should have executed
the wrenv script. With x.6.4 or newer you do execute:

set ACE_ROOT=your_path
cd %ACE_ROOT%
perl %ACE_ROOT%\bin\mwc.pl vxworks.mwc -type wb26 -make_coexistence

After you have generated the project files you have to import them into your current Workbench
workspace with the following steps

• Open the workbench

• Select File, Import, General, Existing Projects into Workspace

• Select your ACE_ROOT directory and let the Workbench search for projects

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

19.9. WindRiver Workbench 2.6 | 87

• Select now the projects you want to import in the Projects list and select Finish

• After importing close the workbench

• Copy the prefs file to its location, see below

• Start the workbench again

The build order of the projects is stored in an eclipse file that is generated as workspace by the
wb26 generator. After you have imported the projects into the Workbench close it and then copy
the generated org.eclipse.core.resources.prefs file to the
.metadata\.plugins\org.eclipse.core.runtime\.settings directory of the
Workbench and then restart the workbench again. Do note that the build order can only be
generated for the projects that are listed in the MPC workspace. The other option is to use
subprojects to which you can enable with -value_template enable_subprojects=1. There
is a bug in Workbench 2.6/3.0 related to the build order, it is ignored if you use wrws_update to
build the workspace from the commandline. When compiling TAO you need to have tao_idl and
gperf available. You can copy tao_idl and gperf manually to the ACE_wrappers\bin directory of
your target build or you can specify an alternative tao_idl when generating the workspace like
below.

perl %ACE_ROOT%\bin\mwc.pl vxworks.mwc -type wb26 -value_template
tao_idl=$(HOST_TAO_IDL)
perl %ACE_ROOT%\bin\mwc.pl vxworks.mwc -type wb26 -value_template
tao_idl=c:\tmp\tao_idl

When using the -expand_vars by default only the environment variables which match the
wildcard *_ROOT are expanded. If you want to get other environment variables expanded (like
WIND_BASE) you can specify these through the -relative argument or use a file that you
specify with ` -relative_file`. For example you can use the following relative_file which expands the
environment variables listed.

*_ROOT
TAO_ROOT, $ACE_ROOT/TAO
*_BASE

We do have some limitations at this moment because of restrictions in MPC or the Workbench. We
are working on resolving the MPC restrictions, the Workbench restrictions have been reported to
WindRiver and are already converted to enhancement requests. It is important to get these
enhancement requests implemented by WindRiver. As user you can have impact on the
importance of these enhancement requests, create a new TSR for WindRiver and ask WindRiver
to implement these enhancement requests. Pleas let us know that you have done this so that we
can inform our local WindRiver contacts. We also have a large list of POSIX enhancement
requests, if you are interested in more POSIX compliance contact us to get this list.

• You need to close the workbench when generating the project files. The WB doesn’t detect
that the .project/.wrproject/org.eclipse.core.resources.prefs files got changed on disk
(WIND00116553)

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

88 | Chapter 19. Building TAO

• You need to import, close, and then change the build order file (WIND00116553)

• When using includes/recursive_includes do not use . as path, but an environment variable
which can be expanded to a full path (combined WB/MPC restriction)

• We need to generate full paths in the .project file because WB doesn’t support relative files
like ../MyHeader.h (WIND00116641)

• There is no dependency between the IDL file and the resulting *C.{h,cpp,inl} and
*S.{h,cpp,inl} files. This is because the IDL compiler can’t be integrated a real build tool
because a custom clean step can’t be defined (WIND00117037)

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

19.9. WindRiver Workbench 2.6 | 89

Chapter 20. Autobuild framework

For ACE/TAO we have created an autobuild framework that can be used to build ACE/TAO and run
all regression tests automatically. When the build is ready the text output is converted to html with
an index page so that you can quickly see if there are errors and warnings.

The autobuild framework requires that you have the following tools preinstalled on your system.

• Perl (ActiveState Perl for Windows hosts)

• Git client

• Cygwin for Windows hosts (install the default packages including rsync/scp)

The first step is to checkout the autobuild repository from subversion. The normal setup is to
create an ACE directory, below that directory then autobuild and at the same level all builds are
located.

mkdir ACE
cd ACE
git clone https://github.com/DOCGroup/autobuild

Now you have the autobuild tools on your system you have to setup a new autobuild specifically to
your system. The first step would be to determine the type of build you want to setup. Important
information to determine to start with are:

• ace/config.h contents

• include/makeinclude/platform_macros.GNU contents

• bin/MakeProjectCreator/config/default.features contents * These files are
created in the autobuild setup file.

The autobuild file for a specific build is written in xml. In the autobuild file you can specify several
tags.

The first line is the opening:

<autobuild>

Then we need to specify the configuration of the build. These are grouped together

 <configuration>

This are environment variables that will be set by the autobuild framework before starting the build
process. An environment value is specified using its name and you give it a value. This will
override any setting done on the system already. If you want to have your values prefixed to the
already set environment setting on the OS, specify type="prefix" after the value. As example
we assume that you put the build under /build/ACE

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

90 | Chapter 20. Autobuild framework

http://www.activestate.com/products/activeperl
http://www.cygwin.com

Several variables must be set including ACE_ROOT and TAO_ROOT. On Unix hosts you must set
LD_LIBRARY_PATH, on Windows systems make sure you use the PATH variable.

<environment name="ACE_ROOT" value="/build/ACE/ACE_wrappers" />
<environment name="TAO_ROOT" value="/build/ACE/ACE_wrappers/TAO"/>
<environment name="LD_LIBRARY_PATH" value="/build/ACE/ACE_wrappers/lib" />

The location where the build is stored on the local disk

<variable name="root" value="/build/ACE/" />

The name of the logfile that is used during the build

<variable name="log_file" value="build.txt" />

The location where the logfile will be located

<variable name="log_root" value="/build/ACE/" />

This configs variable is used by the test framework

<variable name="configs" value="Linux Exceptions" />

After the environment and variable settings you specify the steps the build performs. First, we have
to prevent that we run the same build multiple times, to prevent this we use a socket port on the
system, the number can be chosen by the user. If you have multiple builds on your system then
giving all builds the same number will make sure only one build runs at the same moment. In the
past this was also achieved by creating and checking for a .disable but the disadvantage of this
approach is that in case of a system restart a manual cleanup has to be performed.

<command name="process_listener" options="localhost:32003" />

Then you have to get the sourcecode from the archive:

<command name="svn" options="co
svn://svn.dre.vanderbilt.edu/DOC/Middleware/sets-anon/ACE+TAO+CIAO ." />

Then you have to make sure that the config.h, platform_macros.GNU, and default.features are
created. The contents below are an example which you must change to match your requirements.

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

Chapter 20. Autobuild framework | 91

<command name="file_manipulation"
 options="type=create file=ACE_wrappers/ace/config.h output='#include
\x22ace/config-linux.h\x22\n'"/>
<command name="file_manipulation"
 options="type=create
file=ACE_wrappers/include/makeinclude/platform_macros.GNU output='
 include $(ACE_ROOT)/include/makeinclude/platform_linux.GNU\n'" />
<command name="file_manipulation"
 options="type=create
file=ACE_wrappers/bin/MakeProjectCreator/config/default.features output=''"
/>

To give other people insight in what for build you are running you can print several sets of
information to the config page. The more info the better and by default we deliver the following
commands to print this info. Print the host and os information of the system the build runs on

<command name="print_os_version" />

Print the version information of the compiler. We do support several compilers, see
autobuild/command/check_compiler.pm for the list of compilers that can be checked.

<command name="check_compiler" options="gcc" />

Print the first line of all ChangeLog files together with the config.h/platform_macros.GNU and
default.features file. It is important that you have created these files before you use this command
to give the correct information

<command name="print_ace_config" />

If you are using GNU make this command can be used to print the GNU make information to the
config page

<command name="print_make_version" />

Print the perl version

<command name="print_perl_version" />

If you are hosting an autoconf build this command prints the version of all required tools

<command name="print_autotools_version" />

If you are using valgrind to detect memory leaks this prints the valgrind version

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

92 | Chapter 20. Autobuild framework

<command name="print_valgrind_version" />

With these commands in you autobuild file other users can see the settings of the build and on
what for system it runs, this can help when your build has compile and/or test failures.

Generate the makefiles

<command name="generate_workspace" options="-exclude TAO/TAO_*.mwc -type
gnuace" />

Run make

<command name="make" options="-k" />

Stop logging

<command name="log" options="off" />

Remove old logs and convert the txt log file to html

<command name="process_logs" options="clean move prettify index" />

By default 10 build logs are store, if you want to have less or more build logs, you can specify this
as part of the clean step, for example clean=20 will result in 20 build logs being kept as history.
At the moment the specified maximum has been reached the oldest log file will be removed.

Besides the variables mentioned above the following variables can be useful. For example the
program used as make defaults to make but you can override this for example to gmake.

<variable name="make_program" value="gmake"/>

The program used as subversion client (svn)

<variable name="svn_program" value="/usr/local/bin/svn" />

The program that will be used for rsync ssh.

<environment name="RSYNC_RSH" value="ssh" />

The doc_group welcomes daily builds that are hosted by users. To be able to use the build results
you will need to commit yourself to run the build at least once a day and publish the build results
on a public webserver. To list the build on the scoreboard please change the template below for

CORBA Programmers Guide v1.15 © Remedy IT Expertise BV

Chapter 20. Autobuild framework | 93

your build and send it to one of the mailing lists including the info on which scoreboard this should
be listed (ACE, TAO, or CIAO). The website should list at least an email address where we can
contact you in case of issues.

<build>
<name>BuildName</name>
<url>http://yourserver/yourlogfiledirectory</url>
<build_sponsor>YourComapny</build_sponsor>
<build_sponsor_url>YourWebsite</build_sponsor_url>
</build>

CORBA Programmers Guide v1.15 v1.15 © Remedy IT Expertise BV

94 | Chapter 20. Autobuild framework

	CORBA Programmers Guide
	Table of Contents
	Preface
	Contact information
	Chapter 1. Remedy IT Support
	Chapter 2. Training
	2.1. Using the ACE C++ Framework
	2.2. Introduction to CORBA
	2.3. CORBA Programming with C++
	2.4. CORBA Programming with C++11
	2.5. Advanced CORBA Programming with TAO
	2.6. Component Based Development using AXCIOMA

	Chapter 3. Obtain your CORBA implementation
	3.1. TAOX11
	3.2. R2CORBA
	3.3. TAO
	3.4. JacORB

	Chapter 4. TAOX11
	4.1. Introduction
	4.2. Define your application IDL
	4.3. Implement the server
	4.4. Implement the client
	4.5. Compile client and server
	4.6. Run your application

	Chapter 5. TAO
	5.1. Introduction
	5.2. Define your application IDL
	5.3. Implement the server
	5.4. Implement the client
	5.5. Compile client and server
	5.6. Run your application

	Chapter 6. R2CORBA
	6.1. Introduction
	6.2. Ruby CORBA mapping
	6.3. Download R2CORBA
	6.4. Define your IDL
	6.5. Implement a client
	6.6. Implement a server

	Chapter 7. TAO IDL Compiler
	7.1. Generated Files
	7.2. Environment Variables
	7.3. Operation Demuxing Strategies
	7.4. Collocation Strategies
	7.5. Output File options
	7.6. Controlling code generation
	7.7. Backend options
	7.8. Other options

	Chapter 8. TAO libraries
	Chapter 9. Compression
	9.1. Using compression
	9.2. Implementing your own compressor

	Chapter 10. Using the TAO::Transport::Current Feature
	10.1. Scope and Context
	10.2. Programmer’s Reference
	10.3. User’s Guide
	10.4. Configuration, Bootstrap, Initialization and Operation
	10.5. Implementation and Required Changes
	10.6. Client Side: Sending Requests or Replies
	10.7. Server Side: Request Processing
	10.8. Structural and Footprint Impact
	10.9. Performance Impact
	10.10. Example Code

	Chapter 11. Security
	11.1. Using SSLIOP
	11.2. SSLIOP Options
	11.3. Environment variables
	11.4. Using the SSLIOP::Current Object

	Chapter 12. Real Time CORBA
	12.1. Protocol Policies
	12.2. Creating the protocol properties

	Chapter 13. CORBA/e
	13.1. The standard
	13.2. CORBA/e Compact Profile
	13.3. CORBA/e Micro Profile
	13.4. TAO support

	Chapter 14. ACE documentation
	14.1. C++NPv1
	14.2. C++NPv2
	14.3. ACE Programmer’s Guide

	Chapter 15. CORBA Books
	15.1. Advanced CORBA® Programming with C++
	15.2. Pure CORBA
	15.3. CORBA Explained Simply

	Chapter 16. Design books
	16.1. POSA2

	Chapter 17. C++ books
	17.1. The C++ Programming Language
	17.2. Modern C++ Design

	Chapter 18. Frequently asked questions
	Chapter 19. Building TAO
	19.1. Microsoft Visual Studio
	19.2. GNU make
	19.3. Embarcadero C++ Builder
	19.4. MinGW
	19.5. Building a host build
	19.6. CE GCC
	19.7. RTEMS
	19.8. From the ACE/TAO main github repository
	19.9. WindRiver Workbench 2.6

	Chapter 20. Autobuild framework

